ISOGONAL POINTS FOR A TETRAHEDRON

By N. A. Court

1. Notations. Let M, M^{\prime} be a pair of isogonal conjugate points with respect to a tetrahedron (T) $=A B C D ; P, P^{\prime} ; Q, Q^{\prime} ; R, R^{\prime} ; S, S^{\prime}$, the projections of M, M^{\prime} upon the faces $D B C, D C A, D A B, A B C$ of (T).

The tetrahedrons $(M)=P Q R S,\left(M^{\prime}\right)=P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$ are the pedal tetrahedrons of M, M^{\prime} for (T); the common circumsphere (L) of (M), (M^{\prime}) is the common pedal sphere of M, M^{\prime} for (T).

The lines $p=\left(Q R S, Q^{\prime} R^{\prime} S^{\prime}\right), q=\left(R S P, R^{\prime} S^{\prime} P^{\prime}\right), r=\cdots, s=\cdots$, will be referred to as the co-pedal lines of M, M^{\prime} for (T), or for the respective trihedrons of (T).

The spheres having A, B, C, D, for centers and orthogonal to (L) will be denoted by $(A),(B),(C),(D)$.
2. The pedal tetrahedrons. (a) The points M, M^{\prime} are isogonal for each of the four trihedrons of (T). Thus the planes $P Q R, P^{\prime} Q^{\prime} R^{\prime}$ and the sphere (L) are the pedal planes and the pedal sphere of M, M^{\prime} for the trihedron of (T) having D for vertex.

The plane $D B C$ cuts the sphere (D) along a great circle $\left(d_{a}\right)$ and the sphere (L) along a small circle $\left(l_{a}\right)$ orthogonal to $\left(d_{a}\right)$. The points P, P^{\prime} lie on the circle $\left(l_{a}\right)$ whose center L_{a} is the projection of L upon the plane $D B C$. Now the center L of (L) is the mid-point of the segment $M M^{\prime}[1 ; 243, \S 747]$, hence L_{a} is the midpoint of the segment $P P^{\prime}$, that is, P, P^{\prime} are diametrically opposite points on the circle $\left(l_{a}\right)$. Consequently P, P^{\prime} are conjugate points with respect to the great circle (d_{a}) and therefore also for the sphere (D).

The polar plane of P for (D) is perpendicular to the line $D P$ and therefore also to the plane $D B C$ passing through $D P$; moreover, this polar plane passes through the conjugate P^{\prime} of P, and therefore contains the perpendicular $P^{\prime} M^{\prime}$ at P^{\prime} to the plane $D B C$. Thus the point P is conjugate to the point M^{\prime} for the sphere (D).

Similar considerations applied to the faces $D C A, D A B$ of the trihedron D show that M^{\prime} is also conjugate to the points Q, R for the sphere (D). Hence the polar plane of M^{\prime} for this sphere coincides with the plane $P Q R$.

In a like mannner it may be shown that the point M is the pole of the plane $P^{\prime} Q^{\prime} R^{\prime}$ for (D). Thus:
If M, M^{\prime} are two isogonal points for a trihedron, the pedal planes of M, M^{\prime} for the trihedron coincide with the polar planes of M^{\prime}, M for the sphere having for center the vertex of the trihedron and orthogonal to the pedal sphere of M, M^{\prime} for the trihedron.

Received October 22, 1951; presented to the American Mathematical Society, November 23, 1951.

