THE LEBESGUE CONSTANTS FOR ($E, 1$) SUMMATION OF FOURIER SERIES

By Lee Lorch

1. Introduction. It is shown in this article that the n-th Lebesgue constant for the Euler summation method ($E, 1$), as applied to Fourier series, has the same asymptotic representation (2.3) as that obtained in the case of Borel's exponential means [8], [9].

The divergence of these constants implies, as a consequence of Lebesgue's work on singular integrals [7] (see also [12; 98-99]), the existence of a continuous function whose Fourier series is non-summable $(E, 1)$ for at least one value of the independent variable.
This approach was introduced by Lebesgue $[6 ; 86]$ in connection with the corresponding phenomenon for convergence.

It is well known that any series summable by any Euler mean (E, k) is also summable in the sense of Borel [5], [3; 183]. Consequently, the existence of a continuous function whose Fourier series is non-summable (E, k) is a corollary of Moore's results [10] first establishing this phenomenon for Borel's method. In fact, Moore pointed this out explicitly for ($E, 1$).

Prachar and Schmetterer [11] undertook a direct study of the Lebesgue constants for the ($E, 1$) and ($E, 2$) methods, proving, in each case, that the n-th Lebesgue constant is exactly of order $\log n$ as n becomes infinite.

The more detailed study of the $(E, 1)$ method presented here is divided in two parts. First, the Borel- and Euler-Lebesgue constants are compared with one another, based on the observation that $\cos t$, which occurs in the Euler case, is an approximation to $e^{-t^{2}}$, which occurs in the Borel case. Then the Euler-Lebesgue constants are re-examined by comparison with the Lebesgue constants for convergence. This latter method is the one employed in deriving the asymptotic representation of the Borel-Lebesgue constants [8].
2. Comparison of the Borel and Euler constants. The n-th Lebesgue constant for ($E, 1$) summation of Fourier series can be written [3; 364]

$$
\begin{equation*}
L_{E}(n)=\frac{2}{\pi} \int_{0}^{\frac{1}{2} \pi} \cos ^{n} t \frac{|\sin (n+1) t|}{\sin t} d t, \tag{2.1}
\end{equation*}
$$

for Borel summation [12; 186]

$$
\begin{equation*}
L_{B}(x)=\frac{2}{\pi} \int_{0}^{\frac{1}{2} \pi} \exp \left(-2 x \sin ^{2} t\right) \frac{|\sin (x \sin 2 t+t)|}{\sin t} d t . \tag{2.2}
\end{equation*}
$$

Received June 11, 1951; in revised form, November 5, 1951; presented to the American Mathematical Society, February 25, 1950.

