CONVEX SETS IN LINEAR SPACES. II.

By V. L. KLEE, JR.

Introduction. This paper is a sequel to the author's *Convex sets in linear* spaces [4]. Notation and terminology of [4] are used without further explanation.

In §1 it is demonstrated that for a convex subset X of an arbitrary linear system L, the basic questions concerning polygonal connectedness of $L \sim X$ have the same answers as in the case of a two-dimensional L. §2 contains some characterizations of hyperplanes. §3 supplies a proof, in answer to a question of Erdös, that Hilbert space cannot be covered by fewer than **c** hyperplanes. In §4 it is proved that every non-reflexive separable Banach space contains a pair of disjoint bounded closed convex sets which cannot be separated by a hyperplane. This extends a result of Dieudonné [2] and, when combined with Tukey's separation theorem [10] for weakly compact sets, provides a new characterization of reflexivity. In §5 there is described a topologization (due to Erdös) of the real number system which answers affirmatively the question (Q_1) of [4].

In addition to the notation of [4], we here use $X \bigoplus Y$ to denote the smallest linear subspace containing $X \cup Y$, and $X \bigoplus \equiv X \bigoplus X$.

1. Polygonal connectedness of the complement of a convex set. The theorems of this section are quite elementary. It is hoped that the accumulation of enough results of this general nature may throw some light on the question (Q_2) [4;447]. Also, two of these results provide characterizations of hyperplanes in §2.

Standing hypotheses in 1: L is a linear system and X is a convex subset of L.

(1.1) Suppose X is a convex cone and $L \sim X$ is not polygonally connected. Then X is a maximal variety.

Proof. Clearly the complement of every non-maximal variety is polygonally connected, so it suffices here to prove that X is a variety. We suppose without loss of generality that ϕ is the vertex of X. Then if X is not a variety there is a point $x \in X$ for which $-x \notin X$. Now consider an arbitrary $\lambda \in [0, 1]$ and $y \in L \sim X$. If $\lambda(-x) + (1 - \lambda)y \in X$ then (since X is closed under addition and under multiplication by positive scalars) $y \in X$. Hence, $[-x, y] \subset L \sim X$ for each $y \in L \sim X$ and $L \sim X$ is 2-gonally connected, which is a contradiction. Thus X is a variety and the proof is complete.

(1.2) Suppose $L \sim X$ is not polygonally connected. Then if $X_0 = \Lambda$, X is a maximal variety. If $X_0 \neq \Lambda$, X is the "strip" between two parallel maximal

Received July 20, 1951.