AN EXTENSION OF THE SUM THEOREM OF DIMENSION THEORY
By G. H. BurcHER

1. Introduction. The purpose of this paper is to prove for a class of spaces
more general than separable metric the sum theorem of dimension theory,
using the Urysohn-Menger dimension function. This class of ‘“K-separable”
spaces is defined and some of its properties are developed. It is proved that the
property of being K-separable and metric is hereditary, additive, and topo-
logical. An example of a nowhere separable metric space by Urysohn is shown
to be K-separable and examples of non-K-separable spaces are given. The
equivalence of the Urysohn-Menger dimension function d,(z) and the dimension
function d,(x) (separation of disjoint closed sets) for K-separable spaces is
proved together with some other equivalences and theorems. Finally, the
Sum and Decomposition Theorems for n-dimensional sets are proved in K-
separable spaces.
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2. Notation. Lower case Roman letters used as subscripts will denote a
countable range; lower case Greek letters used as superscripts will denote an
uncountable range. The symbol {4 | P(4)} will denote the set of all 4 such
that the proposition P(4) is true, and \_J {4 | P(4)} the union of the sets 4
such that property P(A4) holds.

3. Definitions.

(8.1) Covering. A covering of a space X is a collection (possibly uncountable)
of open sets whose sum is X.

(8.2) Point basis. If U is a collection of open sets of a space X, then U is a
point basis of x ¢ X provided that for every open set O containing x there exists
some U ¢ U such that ¢ U C O.

(8.3) Separable at a point. A space X is separable at a point p if there exists
an open set O containing p such that O is separable.

(3.4) Nowhere separable. A space X is nowhere separable if X is not separable
at any of its points.

(8.5) 8-void. A metric space is 8-void if x, ' ¢ X implies p(z, 2) > 6. If
X = p is a single point then p is 1-void.

(8.6) n(e). For ¢ > 0 define

n(e) = max {1/k | 1/k < ¢} k=12 --).
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