THE PRODUCT OF THE GENERATORS OF A FINITE GROUP GENERATED BY REFLECTIONS

By H. S. M. Coxeter

In Euclidean n-space, every finite group generated by reflections leaves at least one point invariant, and thus may be regarded as operating on a sphere. It has for its fundamental region a spherical simplex whose dihedral angles are submultiples of π, say $\pi / p_{i k}[6 ; 597,619]$, $\left.10 ; 190\right]$. Accordingly we can use as generators the reflections $R_{1}, R_{2}, \cdots, R_{n}$ in the bounding hyperplanes of this simplex. The product $R_{1} R_{2} \cdots R_{n}$ has already been found useful in various ways [$6 ; 606-617]$, [7], [11]. The n generators may be taken in any order, since the products in different orders are all conjugate [6;602]. Most of the applications of $R_{1} R_{2} \cdots R_{n}$ were concerned with its period, h. In the present paper we consider its characteristic roots

$$
\omega^{m_{1}}, \omega^{m_{2}}, \cdots, \omega^{m_{n}},
$$

where $\omega=e^{2 \pi i / h}$ and the exponents m_{j} are certain integers which may be taken to lie between 0 and h. They are computed by a trigonometrical formula involving the periods, $p_{i k}$, of the products of pairs of generators. (The product of two reflections is simply a rotation.)

The point of interest is that the same integers occur in a different connection. It turns out that the order of the group is

$$
\left(m_{1}+1\right)\left(m_{2}+1\right) \cdots\left(m_{n}+1\right)
$$

and that these factors $m_{i}+1$ are the degrees of n basic invariant forms [2; Chapter XVII]. Moreover, when every $p_{i k}$ is $2,3,4$ or 6 , so that the group is crystallographic, there is a corresponding continuous group, and the Betti numbers of the group manifold are the coefficients in the Poincaré polynomial

$$
\left(1+t^{2 m_{1}+1}\right)\left(1+t^{2 m_{\mathrm{a}}+1}\right) \cdots\left(1+t^{2 m_{n}+1}\right) .
$$

Having computed the m 's several years earlier [10; 221, 226, 234], I recognized them in the Poincare polynomials while listening to Chevalley's address at the International Congress in 1950. I am grateful to A. J. Coleman for drawing my attention to the relevant work of Racah [16], which helps to explain the "coincidence"; also, to J. S. Frame for many helpful suggestions (such as his idea of using the matrix T in $\S 1$, see [8; 6]), to J. A. Todd for his conjecture that the Jacobian of the basic invariants will always factorize into linear forms

[^0]
[^0]: Received June 4, 1951; presented to the American Mathematical Society at the meeting in New Orleans, April, 1951, under the title "Group invariants and Poincaré polynomials."

