NON-EXISTENCE OF ODD PERFECT NUMBERS OF THE FORM

$$3^{2\beta} \cdot p^{\alpha} \cdot s_1^{2\beta_1} s_2^{2\beta_2} s_3^{2\beta_3}$$

By G. CUTHBERT WEBBER

Euler's result [2; 514], [3; 14–15] that any odd perfect number n has the form $n = p^{\alpha}q_1^{2^{\gamma_1}}q_2^{2^{\gamma_2}}\cdots q_t^{2^{\gamma_t}}$, where p, q_1, \dots, q_t are primes and $p \equiv 1 \equiv \alpha \pmod{4}$, was extended by Sylvester [8], if $q_1 = 3$, in which case he proved that $t \geq 4$. In that paper Sylvester stated that t = 4 is impossible; this statement is proved in the present paper.

The following notations are used: $a \mid b$ and $a \nmid b$ mean a divides b and a does not divide b, respectively; $a \rightarrow b \pmod{m}$ means a belongs to $b \pmod{m}$.

Auxiliary lemmas. Lemmas 1 and 2 are due to Brauer [1].

Lemma 1. Let q be a positive prime. The Diophantine equation $q^2 + q + 1 = y^m$ has no solution for m > 1.

Lemma 2. Let r and s be different positive integers and p be a prime. The system of simultaneous Diophantine equations $x^2 + x + 1 = 3p^r$, $y^2 + y + 1 = 3p^s$, has no solutions in positive integers x, y.

The word different can be stricken from the above lemma since $x^2 + x + 1 = y^2 + y + 1$ implies x + y = -1 unless x = y.

We set $f_i(x) = x^{i-1} + \cdots + x + 1$ and refer to it as a cyclotomic sum. If j is a prime p, then $f_p(x)$ is the p-th cyclotomic polynomial. It is well known that the prime divisors of $f_p(x)$ are p and primes of form pz + 1, but p^2 is never a divisor.

Results concerning factors of $f_i(x)$ are contained in

LEMMA 3. If m, q and s are integers, t a prime, then I. $m \mid s$ implies $f_m(x) \mid f_*(x)$.

II. If $q \equiv 1 \pmod{t}$, then $f_s(q) \equiv 0 \pmod{t}$ if and only if $t \mid s$.

III. If $q \to k > 1 \pmod{t}$, then $f_s(q) \equiv 0 \pmod{t}$ if and only if $k \mid s$.

Proof. The proofs of I and II are obvious from the form $f_i(x) = (x^i - 1) \cdot (x - 1)^{-1}$. In III, $q^k - 1 \equiv 0 \pmod{t}$, $f_k(q) \equiv 0 \pmod{t}$, so that $k \mid s$ implies $f_s(q) \equiv 0 \pmod{t}$ by I. For the converse let s = ky + z, $0 \le z < k$. If z > 1, $f_s(q) = f_{ky}(q) + q^{ky} + q^{ky+1} + \cdots + q^{ky+z-1} \equiv 0 + 1 + q + \cdots + q^{z-1} \pmod{t}$. Hence, $f_s(q) \equiv 0 \pmod{t}$ implies $f_s(q) \equiv 0 \pmod{t}$ which is impossible with z < k. Accordingly, z = 0 so that $k \mid s$.

Received March 3, 1948; in revised form, June 25, 1951. Presented to the American Mathematical Society, October 25, 1947. While this paper was in the hands of the Editor a paper by Ullrich Kühnel [5] appeared containing the same result.