NON-EXISTENCE OF ODD PERFECT NUMBERS OF THE FORM

$$
3^{2 \beta} \cdot p^{\alpha} \cdot S_{1}^{2 \beta_{1}} S_{2}^{2 \beta_{2}} S_{3}^{2 \beta_{3}}
$$

By G. Cuthbert Webber

Euler's result [2; 514], [3;14-15] that any odd perfect number n has the form $n=p^{\alpha} q_{1}^{2 \gamma_{2}} q_{2}^{2 \gamma_{2}} \cdots q_{t}^{2 \gamma_{t}}$, where p, q_{1}, \cdots, q_{t} are primes and $p \equiv 1 \equiv \alpha(\bmod 4)$, was extended by Sylvester [8], if $q_{1}=3$, in which case he proved that $t \geq 4$. In that paper Sylvester stated that $t=4$ is impossible; this statement is proved in the present paper.

The following notations are used: $a \mid b$ and $a \nmid b$ mean a divides b and a does not divide b, respectively; $a \rightarrow b(\bmod m)$ means a belongs to $b(\bmod m)$.

Auxiliary lemmas. Lemmas 1 and 2 are due to Brauer [1].
Lemma 1. Let q be a positive prime. The Diophantine equation $q^{2}+q+1=y^{m}$ has no solution for $m>1$.

Lemma 2. Let r and s be different positive integers and p be a prime. The system of simultaneous Diophantine equations $x^{2}+x+1=3 p^{r}, y^{2}+y+1=$ $3 p^{s}$, has no solutions in positive integers x, y.

The word different can be stricken from the above lemma since $x^{2}+x+$ $1=y^{2}+y+1$ implies $x+y=-1$ unless $x=y$.

We set $f_{i}(x)=x^{i-1}+\cdots+x+1$ and refer to it as a cyclotomic sum. If j is a prime p, then $f_{p}(x)$ is the p-th cyclotomic polynomial. It is well known that the prime divisors of $f_{\nu}(x)$ are p and primes of form $p z+1$, but p^{2} is never a divisor.

Results concerning factors of $f_{i}(x)$ are contained in
Lemma 3. If m, q and s are integers, t a prime, then
I. $m \mid s$ implies $f_{m}(x) \mid f_{s}(x)$.
II. If $q \equiv 1(\bmod t)$, then $f_{s}(q) \equiv 0(\bmod t)$ if and only if $t \mid s$.
III. If $q \rightarrow k>1(\bmod t)$, then $f_{s}(q) \equiv 0(\bmod t)$ if and only if $k \mid s$.

Proof. The proofs of I and II are obvious from the form $f_{i}(x)=\left(x^{i}-1\right)$. $(x-1)^{-1}$. In III, $q^{k}-1 \equiv 0(\bmod t), f_{k}(q) \equiv 0(\bmod t)$, so that $k \mid s$ implies $f_{s}(q) \equiv 0(\bmod t)$ by I. For the converse let $s=k y+z, 0 \leq z<k$. If $z>1$, $f_{s}(q)=f_{k \nu}(q)+q^{k \nu}+q^{k \nu+1}+\cdots+q^{k \nu+z-1} \equiv 0+1+q+\cdots+q^{z-1}$ $(\bmod t)$. Hence, $f_{s}(q) \equiv 0(\bmod t)$ implies $f_{z}(q) \equiv 0(\bmod t)$ which is impossible with $z<k$. Accordingly, $z=0$ so that $k \mid s$.

[^0]
[^0]: Received March 3, 1948; in revised form, June 25, 1951. Presented to the American Mathematical Society, October 25, 1947. While this paper was in the hands of the Editor a paper by Ullrich Kühnel [5] appeared containing the same result.

