A CLASS OF SPIRALS

By S. B. Jackson

1. Introduction. In certain recent work in gas dynamics [3], it has become of importance to investigate the geometric behavior of curves whose equations in the complex plane are expressed in the form

$$
z=\int_{0}^{t}\left[a_{1}(u)+i a_{2}(u)\right] e^{i b(u)} d u \quad(0 \leq t<a \leq \infty)
$$

where a_{1}, a_{2}, and b have certain known properties. In this paper such an investigation is made for the case when the curvature of the corresponding curve is monotone. The case $a_{1} \geq 0, a_{2} \equiv 0, b(t) \equiv t$, and $a=\infty$ is first considered ($\S 22,3,4$) with particular emphasis on the behavior of the curve as t becomes infinite. It then appears $(\S \S 5,6)$ that the general case can be reduced to this special case or to a generalization which can be treated by essentially similar methods.
2. Two types of spirals. Consider the curve C whose equation in the complex plane is given by

$$
\begin{equation*}
z=\int_{0}^{t} r(u) e^{i u} d u \quad(0 \leq t<\infty) \tag{2.1}
\end{equation*}
$$

where $r(t)$ satisfies the following conditions:
(a) $r(t)$ is continuous, non-negative, and non-decreasing on $(0, \infty)$ and vanishes at most for the single value $t=0$.
(b) $\lim _{t \rightarrow \infty} r(t)=\infty$
(c) $r(t)$ is not constant on any interval $\left(t_{0}, t_{0}+2 \pi\right)$.

It is verified at once that t is the slope angle for the curve, while $r(t)$ is the radius of curvature. The curve thus has monotone decreasing curvature. The circles of curvature therefore form an expanding family, each one containing or being identical with each preceding one [2; Lemma 2.5]. Moreover, such a curve is simple unless it contains a complete circle [2; Corollary 2.5.2] which is here impossible by condition (2.2c). Hence, C is a simple outwinding spiral. The origin O is on the circle of curvature for $t=0$ and interior to all other circles, so the radius vector $O P$ to an arbitrary point P on the curve turns always in a counterclockwise sense. If α is the slope angle of $O P$, it is easily seen that $\alpha<t<\alpha+\pi$ so α and t become infinite together, and the curve winds infinitely often about 0 .

Received April 25, 1951.

