THE ORDER OF A MATRIX UNDER MULTIPLICATION (MODULO m)

By MARGARET WAUGH MAXFIELD

Introduction. This paper concerns, as does the preceding one by Alex S. Davis, the non-singular n by n matrices with integral entries modulo m, with n > 1. The purpose here is to find the "orders" of these matrices, the word "order" being used in its group theoretic sense. This is a generalization of a result by Niven [1] presented as Theorem 1. Theorem 2 gives the result for the modulus p^a , a power of a prime. Theorem 3 gives the result for the composite modulus m.

THEOREM 1. Let p be a prime. Let P be a partition of n,

$$n=N+n_1+\cdots+n_h$$

with $N \ge 0$, $h \ge 1$, $2 \le n_1 < n_2 < \cdots < n_h$. Let $p\{y\}$ designate the first in the series, 1, p, p^2 , p^3 , \cdots that equals or exceeds y. Then the orders of the non-singular n by n matrices (mod p) are

$$f = p\{n\}(p - 1),$$

$$g_{P} = p\{N\} L.C.M.[p^{n_{1}} - 1, p^{n_{2}} - 1, \dots, p^{n_{h}} - 1],$$

and their divisors, taken over all possible partitions P.

Proof. Niven's Theorem 2 [1] includes the theorem as a special case.

LEMMA 1. Let the matrix S have order $\sigma \pmod{p^r}$. Then its order $(\mod p^{r+1})$ is either σ or $p\sigma$.

Proof. Let σ' be the order of $S \pmod{p^{r+1}}$. Then σ divides σ' .

Now let $B = S^{\sigma}$. Since $B \equiv I \pmod{p^{r}}$, the entries of B can be written $b_{ij} = a_{ij}p^{r} + \delta_{ij}$, where the a_{ij} are integers and the δ is Kronecker's delta. For any positive integer t, the entries of B^{t} will have the form

$$b_{ii}^{(t)} = s_{ii}p^{2r} + (a_{ii}p^r + 1)^t,$$

$$b_{ij}^{(t)} = s_{ij}p^{2r} + ta_{ij}p^r$$

for $i \neq j$, where the s_{ij} are integers. This can be shown by induction on t, taking B^{t+1} as $B^t \cdot B$. From these equations we observe that $B^t = S^{t\sigma}$ is congruent to the identity for t = p. We conclude that σ' is a divisor of $p\sigma$, and so is either σ or $p\sigma$, since it is divisible by σ .

Received May 15, 1951.