CON JUGATE NETS IN THREE- AND FOUR-DIMENSIONAL SPACES

By Chuan-Chif Hsiung

Introduction. The purpose of this paper is to make some contributions to the projective differential geometry of conjugate nets in three- and four-dimensional spaces.
§1 contains a summary of the analytic basis for the development of the first chapter devoted to the study of a conjugate net in ordinary space. Let Φ be a fixed plane and P_{x} be a nonsingular point of a conjugate net N_{x} in ordinary space. The points M, M^{\prime} of intersection of the fixed plane Φ and the two tangents of the net N_{x} at the point P_{x} describe two plane nets N_{M}, N_{M}, respectively. In §2, we show that one of the two plane nets N_{M}, N_{M}, is a Laplace transformed net of the other, and we also study a special case in which one of the two plane nets N_{M}, N_{M}, has equal and nonzero Laplace-Darboux invariants.

The second chapter treats of a conjugate net N_{x} in a four-dimensional space S_{4}. $\S 3$ contains a summary of the analytic basis for the development of this chapter. In $\S 4$ some of the results obtained in $\S 2$ are extended to the space S_{4} by using a fixed hyperplane instead of the fixed plane Φ. Let Ψ be a fixed plane determined by two fixed hyperplanes in the space S_{4}, and N_{T} be the plane net described by the point T of intersection of the fixed plane Ψ with the tangent plane at a point x of the net N_{x}. In the last section, we derive the equation of Laplace and the Laplace-Darboux invariants for the plane net N_{T}, and also study some special cases in which one or both of the first and minus-first Laplace transformed nets of the net N_{T} degenerate into curves or the net N_{T} has equal and nonzero Laplace-Darboux invariants.

I. Conjugate Nets in Ordinary Space

1. Analytic basis. Let N_{x} be a conjugate net with parameters u, v on an analytic proper surface S in ordinary space. For the sake of convenience we take the conjugate net N_{x} on the surface S as parametric, so that the homogeneous projective coordinates $x^{(1)}, \cdots, x^{(4)}$ of a point P_{x} on the surface S are given as analytic functions of the two independent variables u, v by equations of the form

$$
\begin{equation*}
x=x(u, v) . \tag{1.1}
\end{equation*}
$$

The four coordinates x and the four coordinates y of the point P_{ν}, which is the harmonic conjugate of the point P_{x} with respect to the foci of the axis of

