ASYMPTOTIC RELATIONS IN TOPOLOGICAL GROUPS

By W. H. GOTTSCHALK AND G. A. HEDLUND

The following theorem has been proved by Kawada [2].

Let G be an additive Abelian connected locally compact group, let ν be Haar measure in G, let E be a non-vacuous open subset of G such that cls E (where cls E denotes the closure of E) is compact and let $x \in G$. Then

(1)
$$\lim_{n\to\infty} \frac{\nu((nE)\cap (nE+x))}{\nu(nE)} = 1.$$

In connection with the study of generalized dynamical systems (see Bernard [1]) it would be desirable to have (1) available under less restrictive hypotheses. The purpose of this paper is to show that (1) remains valid if it is no longer assumed that G is connected, but it is assumed instead that some translate of E generates G.

The additive group of integers (reals) with its discrete (natural) topology is denoted by $\mathfrak{s}(\mathfrak{A})$.

Let G be an Abelian group which is generated by some compact neighborhood of the identity. A known structure theorem (see Weil [3; 110]) states that G is isomorphic to a Cartesian product $\mathcal{I}^m \times \mathcal{R}^p \times C$ for some non-negative integers m, p and some compact Abelian group C. Since the presence of C causes no difficulty in the derivation of our result, for the present we shall be concerned only with the group $\mathcal{I}^m \times \mathcal{R}^p$.

Parentheses will be used only as symbols of grouping and not merely to enclose the argument of a function. Where the grouping is obvious, parentheses may be omitted.

Let m, p be non-negative integers and let q = m + p. We note that $\mathfrak{G}^{\mathfrak{G}} \subset \mathfrak{G}^m \times \mathfrak{K}^p \subset \mathfrak{K}^q$. Haar-Lebesgue measure in $\mathfrak{G}^m(\mathfrak{K}^p)(\mathfrak{K}^q)$, denoted by $\sigma_0(\sigma_1)(\sigma)$, is normalized so that the measure of a point (unit cube) (unit cube) is 1. Haar-Lebesgue measure in $\mathfrak{G}^m \times \mathfrak{K}^p$, denoted by μ , is the product of σ_0 and σ_1 . Let $A \subset \mathfrak{K}^q$. We write μA in place of $\mu(A \cap (\mathfrak{G}^m \times \mathfrak{K}^p))$. If $x \in \mathfrak{K}^q$, then $\sigma(A, x)$ denotes $\sigma(A \cap (A + x))$ and $\sigma(A, x)$ denotes $\sigma(A \cap (A + x))$ and $\sigma(A, x)$ denotes $\sigma(A \cap (A + x))$. If $\sigma(A, x)$ denotes $\sigma(A \cap (A + x))$ and $\sigma(A, x)$ denotes $\sigma(A \cap (A + x))$. If $\sigma(A, x)$ denotes $\sigma(A \cap (A + x))$ and $\sigma(A, x)$ denotes $\sigma(A \cap (A +$

LEMMA 1. Let A be a compact convex subset of \mathbb{R}^q with int $A \neq \phi$ and let $x \in \mathbb{R}^q$. Then $\mu nA \sim \mu(nA, x) \sim \sigma(nA, x) \sim \sigma nA$.

Proof. We show $\mu nA \sim \sigma nA$. For each $y = (y_1, \dots, y_q)$ ε g^q we define the unit cube $B_{\nu} = [z \mid y_i \leq z_i < y_i + 1; i = 1, \dots, q] \subset \mathbb{R}^q$. We observe Received August 3, 1949.