ASYMPTOTIC RELATIONS IN TOPOLOGICAL GROUPS

By W. H. Gottschalk and G. A. Hedlund

The following theorem has been proved by Kawada [2].
Let G be an additive Abelian connected locally compact group, let ν be Haar measure in G, let E be a non-vacuous open subset of G such that cls E (where cls E denotes the closure of E) is compact and let $x \in G$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\nu((n E) \cap(n E+x))}{\nu(n E)}=1 \tag{1}
\end{equation*}
$$

In connection with the study of generalized dynamical systems (see Bernard [1]) it would be desirable to have (1) available under less restrictive hypotheses. The purpose of this paper is to show that (1) remains valid if it is no longer assumed that G is connected, but it is assumed instead that some translate of E generates G.
The additive group of integers (reals) with its discrete (natural) topology is denoted by $\mathfrak{G}(\mathcal{R})$.

Let G be an Abelian group which is generated by some compact neighborhood of the identity. A known structure theorem (see Weil [3; 110]) states that G is isomorphic to a Cartesian product $\mathfrak{g}^{m} \times \mathfrak{R}^{\mathfrak{p}} \times C$ for some non-negative integers m, p and some compact Abelian group C. Since the presence of C causes no difficulty in the derivation of our result, for the present we shall be concerned only with the group $\mathfrak{g}^{m} \times \mathbb{R}^{p}$.

Parentheses will be used only as symbols of grouping and not merely to enclose the argument of a function. Where the grouping is obvious, parentheses may be omitted.

Let m, p be non-negative integers and let $q=m+p$. We note that $\mathfrak{g}^{q} \subset$ $\mathfrak{g}^{m} \times \mathfrak{R}^{p} \subset \mathfrak{R}^{q}$. Haar-Lebesgue measure in $\mathfrak{g}^{m}\left(\mathcal{R}^{p}\right)\left(\mathbb{R}^{q}\right)$, denoted by $\sigma_{0}\left(\sigma_{1}\right)(\sigma)$, is normalized so that the measure of a point (unit cube) (unit cube) is 1 . HaarLebesgue measure in $\mathfrak{g}^{m} \times \mathbb{R}^{p}$, denoted by μ, is the product of σ_{0} and σ_{1}. Let $A \subset \mathbb{R}^{q}$. We write μA in place of $\mu\left(A \cap\left(\mathfrak{g}^{m} \times \mathbb{R}^{p}\right)\right)$. If $x \varepsilon \mathbb{R}^{q}$, then $\sigma(A, x)$ denotes $\sigma(A \cap(A+x))$ and $\mu(A, x)$ denotes $\mu(A \cap(A+x))$. If n is a positive integer, then $n A$ denotes $\left[a_{1}+\cdots+a_{n} \mid a_{i} \varepsilon A_{i} ; i=1, \cdots, n\right]$ and $n^{-1} A$ denotes $\left[n^{-1} a \mid a \varepsilon A\right]$. If f and g are functions of a positive integer n, then $f_{n} \sim g_{n}$ shall mean $\lim _{n \rightarrow \infty} f_{n} / g_{n}=1$. We note that \sim is an equivalence relation.

Lemma 1. Let A be a compact convex subset of \mathbb{R}^{q} with $\operatorname{int} A \neq \phi$ and let $x \varepsilon \mathbb{R}^{q}$. Then $\mu n A \sim \mu(n A, x) \sim \sigma(n A, x) \sim \sigma n A$.

Proof. We show $\mu n A \sim \sigma n A$. For each $y=\left(y_{1}, \cdots, y_{q}\right) \varepsilon \mathfrak{g}^{q}$ we define the unit cube $B_{y}=\left[z \mid y_{i} \leq z_{i}<y_{i}+1 ; i=1, \cdots, q\right] \subset \mathbb{R}^{q}$. We observe

Received August 3, 1949.

