## THE VOLUME OF A CERTAIN MATRIC DOMAIN

By H. S. A. Potter

Introduction. Let $A<B$ mean that the real symmetric matrix $B-A$ is positive definite and $A \leq B$ mean that $B-A$ is positive semi-definite. Suppose that we are given two real symmetric positive definite matrices $S, T$ of order $m, n$ respectively. Let $X$ be a real $m \times n$ variable matrix and $\mathcal{E}(S, T)$ be the domain in the $m n$ dimensional space of the variable $X$ defined by $X^{\prime} S X<T$, where $X^{\prime}$ denotes the transpose of $X$. We shall find the Euclidean volume $h(S, T)$ of the domain $\mathbb{E}(S, T)$.

$$
\text { The domain } X^{\prime} S X<T \text {. }
$$

1. Let

$$
\{d X\}=\prod_{i=1}^{m} \prod_{i=1}^{n} d x_{i j}
$$

and

$$
\begin{equation*}
h(S, T, \alpha)=\int_{\Xi(S, T)}\left|T-X^{\prime} S X\right|^{\alpha}\{d X\} \tag{1}
\end{equation*}
$$

so that the required volume $h(S, T)=h(S, T, 0)$. We shall write

$$
\begin{equation*}
h_{m, n}(\alpha)=h\left(1_{m}, 1_{n}, \alpha\right), \quad h_{m, n}=h_{m, n}(0), \tag{2}
\end{equation*}
$$

where $1_{n}$ denotes the unit matrix of order $n$. Also we put $\mathfrak{F}_{m, n}=\mathfrak{E}\left(1_{m}, 1_{n}\right)$ so that $\mathfrak{E}_{m, n}$ denotes the $m n$ dimensional "unit sphere", $X^{\prime} X<1_{n}$.

Theorem 1.

$$
h(S, T, \alpha)=|S|^{-n / 2}|T|^{\alpha+m / 2} h_{m, n}(\alpha) .
$$

Proof. Determine positive definite matrices $S_{1}, T_{1}$ such that $S=S_{1}^{2}$, $T=T_{1}^{2}$, and put $Y=S_{1} X T_{1}^{-1}$ in (1). Then $\mathbb{E}(S, T)$ maps into $\mathfrak{E}_{m, n}$ and

$$
\{d X\}=\left|S_{1}\right|^{-n}\left|T_{1}\right|^{m}\{d Y\}=|S|^{-n / 2}|T|^{m / 2}\{d Y\}
$$

so that

$$
h(S, T, \alpha)=|S|^{-n / 2}|T|^{\alpha+m / 2} \int_{\mathfrak{a}_{m, n}}\left|1_{n}-Y^{\prime} Y\right|^{\alpha}\{d Y\}
$$

We shall next prove a generalization of Schmidt's theorem (see [5; 96]).
Received September 12, 1949.

