SECOND ORDER DETERMINANTS OF LEGENDRE POLYNOMIALS
By GEORGE E. FORSYTHE

1. Introduction and summary of results. For each non-negative integer r
let P,(x) be the Legendre polynomial of r-th degree on the interval (—1, 1),
normalized, as in [5; Chapter XV], so that P,(1) = 1. For integers n, h, k
such that

(1) n >0, k>h21,
we define the following function of the real variable x:

P,(2) P,.i(z)
A= A(n, h, k;x) = .
P..i(x) Poinin()

When it is not specified otherwise, it will be assumed that », h, k are integers
satisfying (1). When & + k is an even [odd] integer, A is an even [odd] function
of . Clearly A(n, h, k; 1) = 0.

DeriniTION. Let n, h, k be given. The determinant A = A(n, h, k; ) is
said to have property T when 0 < z < 1 implies that A < 0. (The T is for
Turén.)

The general purpose of this investigation is to see which of the determinants
A have property T. Turin discovered that A(n, 1, 1; z) has property T for all
n > 0, and Szego gave several proofs of this in [3]. In §2 and §3 it will be shown
that A(n, 1, 2; 2) and A(2n + 1, 2, 2; z) both have property T for all n > 0.
The proofs involve applying Szegé’s first method of proof to A, dA/dx, or
d®A/d2® in various subintervals of the interval (0, 1). The inequality for
A(2n + 1, 2, 2; z) is shown in §3 to be equivalent to an inequality of the original
Turén type for the Jacobi polynomials P{*'® () in the notation of [4; Chapter 4].

On the other hand, the table on p. 362 summarizes the triples (n, h, k) for
which it is proved in §4 that A(n, h, k; ) fails to have property T. The Roman
numerals refer to the cases within §4.

The triples of the table have an asymptotic density of seven-eighths within the
class of triples (», h, k) satisfying (1). One wonders whether A(n, 1, 1; x),
A(n, 1,2;z), A(2n + 1, 2, 2; x) may be the only determinants of type A(n, h, k; z)
with property T.

In a related paper [1] dealing with determinants of higher orders, Beckenbach,
Seidel and Szdsz have shown (as a special case of their Theorem 4) for all n,
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