NOTE ON AN INFINITE INTEGRAL
By ALExANDER M. OSTROWSKI

In this note we prove (Theorem II), that from the convergence of an integral
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follows the convergence of the integral [ f(z)z™‘“*" dz. That this is no longer
true for « = 0 is well known and is the essential point behind the so-called
Frullani theorem.

This result appears to be new while our Theorem I, the relation
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is, in the case a = 1, more or less old, since a formula by Winckler,
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is an immediate corollary of our formula for @ = 1. (The integral on the left
in (W) has been considered by J. Bertrand [1; 225] and G. Frullani [2; 462].
However, the results given by both authors are not correct.) I have been
unable to find in the literature the Theorem I as I prove it.

LemMma 1. Let for a positive p and a positive o the integral
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exist. Then the integral
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extists, and we have
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(In (1), (2), (5), (9) and (13), the right-hand integral is to be understood as
a Lebesgue integral.)

Proof. For 0 < z, < z < p we have by the second mean value theorem
(for this theorem in the case of Lebesgue integrals, see [3; 231]) the relation
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