THE COMPARISON OF SPECTRA BELONGING TO POTENTIALS WITH A BOUNDED DIFFERENCE

BY C. R. PUTNAM

1. Let λ denote a real parameter and let p(t), $q_1(t)$ and $q_2(t)$ be real-valued, continuous functions on the half-line $0 \leq t < \infty$ satisfying

(1)
$$p(t) > 0, |q_1(t) - q_2(t)| < \text{constant} < \infty$$
 $(0 \le t < \infty).$

It is known that either both or neither of the differential equations

(2_k)
$$(px')' + (\lambda + q_k(t))x = 0$$
 $(k = 1, 2),$

is (in the terminology of Weyl [6; 238]) in the Grenzpunktfall. In fact, Wintner has observed this fact to be a corollary of a more general theorem concerning integral kernels due to Carleman [1; 72, 78]. For if the two expressions appearing on the left of each of the equations (2_k) are denoted by $L_k(x)$, where L_k , k = 1, 2, are differential operators, it is seen that $L_1 - L_2 = q_1 - q_2$; hence, by (1), this difference is a bounded operator in the Hilbert's space $L^2[0, \infty)$. The desired result then follows from [1; 78], where it is shown that the "class" of an integral kernel is unchanged by adding to it a bounded kernel. If both equations (2_k) are in the Grenzpunktfall, let $S_k(\alpha)$ denote the spectrum of the boundary value problem on $0 \leq t < \infty$ determined by (2_k) and the boundary condition

(3)
$$x(0) \cos \alpha + x'(0) \sin \alpha = 0 \qquad (0 \le \alpha < \pi).$$

The set of cluster points of the set $S_k(\alpha)$ is independent of α [6; 251] and will be denoted by S'_k , k = 1, 2. The following will be proved:

(*) Let p(t), $q_1(t)$ and $q_2(t)$ denote continuous functions on $0 \leq t < \infty$ satisfying (1) and such that both equations (2_k) , k = 1, 2, are in the Grenzpunktfall. (i) If α is fixed and μ_1 denotes any point of the set $S_1(\alpha)$, then there exists at least one point μ_2 of the set $S_2(\alpha)$ satisfying

(4)
$$|\mu_1 - \mu_2| \leq \beta$$
, where $\beta = \underset{0 \leq t < \infty}{\operatorname{lu.b.}} |q_1(t) - q_2(t)|$.

(ii) If μ_1 denotes any point of the set S'_1 , there exists at least one point of the set S'_2 satisfying

(5)
$$|\mu_1 - \mu_2| \leq \gamma$$
, where $\gamma = \limsup_{t \to \infty} |q_1(t) - q_2(t)|$.

If $p(t) \equiv 1$, $|q_1(t)| < \text{constant}$ and $q_2(t) \equiv 0$, the theorem of [4] readily follows from (*).

Received June 13, 1949.