CONVERGENCE AND ($C, 1,1$) SUMMABILITY OF DOUBLE ORTHOGONAL SERIES

By Josephine Mitchell

1. Introduction. Let E be the Cartesian product of two sets E_{1} and E_{2}, where $E_{k}(k=1,2)$ has finite measure and is embedded in Euclidean space. If $\left\{\phi_{m}\right\}(m=1,2, \cdots)$ is a complete orthonormal system (CONS) of functions of class L^{2} on E_{1}, and $\left\{\psi_{m}\right\}$ a similar set on E_{2}, then $\left\{\phi_{m n}=\phi_{m} \psi_{n}\right\}$ ($m, n=1,2, \cdots$) forms a CONS on E; that is,

$$
\begin{equation*}
\int_{E} \phi_{m n} \phi_{p a} d A=\delta_{m p} \delta_{n a} \quad \text { (ON relations) } \tag{1.1}
\end{equation*}
$$

where $d A$ is the Euclidean volume element on E, and $\int_{E} \phi_{m n} f d A=0(m, n=$ $1,2, \cdots$) for an $f \varepsilon L^{2}$ implies $f=0$ almost everywhere (a. e.) on E (completeness).

The orthogonal development of any function $f \varepsilon L^{2}$ with respect to the ONS $\left\{\phi_{m n}\right\}$ is given by

$$
\begin{equation*}
\sum_{m, n=1}^{\infty} a_{m n} \phi_{m n} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{m n}=\int_{E} \phi_{m n} f d A \tag{1.3}
\end{equation*}
$$

The $m n$-th partial sum of series (1.2) will be denoted by $S_{m n}$ and the $m n$-th $(C, 1,1)$ sum by $\sigma_{m n}$. The $m n$-th kernel function is

$$
\begin{equation*}
K_{m n}(P, Q)=\sum_{i, k=1}^{m, n} \phi_{i k}(P) \phi_{i k}(Q) \quad(P, Q \varepsilon E) \tag{1.4}
\end{equation*}
$$

and the corresponding Lebesgue function is

$$
\begin{equation*}
L_{m n}(P)=\int_{E}\left|K_{m n}(P, Q)\right| d A \tag{1.5}
\end{equation*}
$$

For ($C, 1,1$) summability the analogous functions are

$$
\begin{align*}
K_{m n}^{(1)}(P, Q)= & \frac{1}{m n} \sum_{i, k=1}^{m, n} K_{i k}(P, Q) \\
= & \sum_{i, k=1}^{m, n}\left(1-\frac{j-1}{m}\right)\left(1-\frac{k-1}{n}\right) \phi_{i k}(P) \phi_{j k}(Q), \tag{1.6}\\
& L_{m n}^{(1)}(P)=\int_{E}\left|K_{m n}^{(1)}(P, Q)\right| d A \tag{1.7}
\end{align*}
$$

Similar notation is used in referring to the simple orthogonal series.
Received February 16, 1949; in revised form, January 2, 1951; presented to the American Mathematical Society at Chicago, February 26, 1949.

