FIELDS OF PARALLEL VECTORS IN CONFORMALLY FLAT SPACES

By Jack Levine

1. Introduction. In his paper on hypersurfaces in an Einstein space, Wong [12] has considered the problem of obtaining conditions on a conformally flat space C_n , n > 3, in order that it may admit a scalar ρ with vanishing second covariant derivative, $\rho_{,ij} = 0$. In case $\xi \equiv g^{ij}\rho_{,i}\rho_{,i} \neq 0$, he obtained the canonical fundamental form of such a C_n ,

$$(1.1) e_1(dx^1)^2 + \sum_{\alpha} e_{\alpha}(dx^{\alpha})^2 / [1 + \frac{1}{4}K_0 \sum_{\alpha} e_{\alpha}(x^{\alpha})^2] (\alpha = 2, \dots, n).$$

In case $\xi = 0$, the canonical form obtained was

$$(1.2) \qquad \sum_{1}^{n-2} e_{\alpha} (dx^{\alpha})^{2} + 2dx^{n-1} dx^{n} + \left[Z \sum_{1}^{n-2} e_{\alpha} (x^{\alpha})^{2} + \sum_{1}^{n-2} Z_{\alpha} x^{\alpha} + Z_{n-1} \right] (dx^{n})^{2}.$$

In (1.1) the constant $K_0 \neq 0$, and in (1.2) the Z's are arbitrary functions of x^n . These results were based on the work of Brinkman [1].

The equations $\rho_{,i} = 0$ imply the existence of a field of parallel vectors $\rho_{,i}$. In this paper we consider the problem of the existence of a set of r = p + q fields of parallel vectors in a C_n , of which p are non-null, and q are null vectors. Such a C_n will be denoted by $C_n(p, q)$. It will be shown that if r > 1 the $C_n(p, q)$ is a flat-space, and hence the only possibilities are $C_n(1, 0)$ and $C_n(0, 1)$.

A $C_n(1, 0)$ is shown to be a symmetric space of Cartan of class 1. Also, both $C_n(1, 0)$ and $C_n(0, 1)$ are shown to be spaces of recurrent curvature, a type of space considered by Ruse in his study of harmonic spaces [9]. Such a space is a V_n in which (3.11) is satisfied, *i.e.*, a space of recurrent curvature.

Necessary and sufficient conditions in invariant form are stated in Theorem 3.1 in order that a C_n admit exactly one parallel vector field. Also new canonical forms of the fundamental forms are obtained in §4. In addition the equations of imbedding of a $C_n(1, 0)$ in a flat S_{n+1} are given, the $C_n(1, 0)$ being expressed as a spherical hypercylinder in the S_{n+1} . Finally some geometric properties of the $C_n(1, 0)$ are obtained involving its second fundamental form.

From a theorem of Cartan it is known that symmetric spaces admit transitive groups of motions with sub-groups of rotations [11; 48]. The group associated with a $C_n(1, 0)$ is found to consist of 1 + n(n-1)/2 parameters with a rotation sub-group of n(n-1)/2 parameters.

Indices h, i, j, k, m have the range 1, \cdots , n; α , β , the range 2, \cdots , n; and other ranges are as indicated. We assume n > 2 unless otherwise stated.

Received January 3, 1949; in revised form, July 6, 1949.