FUNCTIONS WHOSE FOURIER-STIELT JES COEFFICIENTS APPROACH ZERO

BY R. J. DUFFIN AND A. C. SCHAEFFER

The main purpose of this note is to prove Theorem 2, below, which concerns generalized Fourier-Stieltjes coefficients of a function of bounded variation. If $k_n = 0$, Theorem 2 concerns the ordinary Fourier-Stieltjes coefficients. In this case Theorem 2 is deducible from results of Rajchman [2], [3], Verblunsky [4], and Young [5]. Theorem 2 is used to give a short proof of essentially known results, Theorems 3 and 4. The proof of Theorem 2 is based on a simple application of a complex variable technique developed previously by the writers [1].

THEOREM 1. Let $f(z)$ be regular in the half plane $x \geq 0$ and satisfy there $|f(z)| \leq$ g(y) $e^{x|y|}$ where $g(y)$ is a bounded function such that $g(y) \rightarrow 0$ as $y \rightarrow +\infty$. Let
where $n = 1, 2, \cdots$, be a bounded sequence of real numbers, and suppose $f(n + \rightarrow 0$ as $n \rightarrow \infty$. Then $f(x) \rightarrow 0$ as $x \rightarrow +\infty$. where $n = 1, 2, \dots$, be a bounded sequence of real numbers, and suppose $f(n + ik_n)$
 $\rightarrow 0$ as $n \rightarrow \infty$. Then $f(x) \rightarrow 0$ as $x \rightarrow +\infty$. -0 as $n \to \infty$. Then $f(x) \to 0$ as $x \to +\infty$.
Proof. Suppose on the contrary that there is an unbounded sequence x_i .

 $j = 1, 2, \dots$, where $|f(x_i)| > q > 0$. Let $n_i = [x_i]$ and $f_i(z) = f(z+n_i+1)$ 1/2). By the Ascoli-Vitali convergence theorem there is a subsequence of the $f_i(z)$ which converges uniformly in $|z| \leq r$ to an entire function $F(z)$ which clearly satisfies $|F(z)| \leq g(y) e^{x+y}$. Since $|f_i(x)| > q$ for some point in the interval $-1/2 \leq x \leq 1/2$, it follows that $F(z)$ is not identically zero. Suppose $|k_i| < b$; then $f_i(x)$ becomes arbitrarily small at some point of each line segment $x = n - 1/2$, $|y| \le b$, $n = 0, \pm 1, \pm 2, \cdots$ It follows that $F(z)$ has a zero in each of these segments.

Let $N(r)$ be the number of zeros of $F(z)$ in the circle $|z| = r$. In the rectangle $|y| \leq b, |x| \leq n-1/2, n = 1, 2, \cdots$, there are at least 2n zeros of $F(z)$; $\leq n - 1/2$, $n = 1, 2, \cdots$, there are at least $2n$ zeros of $F(z)$;
 $b, N(r) \geq 2[(r^2 - b^2)^{1/2} + 1/2] \geq 2[r - b^2/r + 1/2]$. Assume
 ≤ 0 , and let $J(r) = \int_0^r N(t) dt/t \geq \int_0^r N(t) dt/t$. It is obvious
 $|c| = |t + 1/2 - b^2/t|$ $dt/t = O(1)$ therefore, if $r \ge b$, $N(r) \ge 2[(r^2 - b^2)^{1/2} + 1/2] \ge 2[r - b^2/r + 1/2]$. Assume first that $F(0) \neq 0$, and let $J(r) = \int_0^r N(t) dt/t \geq \int_0^r N(t) dt/t$. It is obvious that $\int_{b}^{t} (t + 1/2] - [t + 1/2 - b^2/t] dt/t = O(1)$. To estimate the first integral it is noted that $\int_{n-1/2}^{n+1/2} [t + 1/2] dt/t = \int_{n-1/2}^{n+1/2} n dt/t = 1 + O(n^{-2})$. Thus $\int_{1}^{1} [t + 1/2] dt/t = r + O(1)$. Hence, for some constant c

(1) $J(r) \geq 2r - c$. $1/2$ dt/t = $r + O(1)$. Hence, for some constant c

$$
J(r) \geq 2r - c.
$$

Jensen's theorem states that $J(r) = (2\pi)^{-1} \int_0^{2\pi} \log |F(re^{i\theta})| d\theta - \log |F(0)|$.
Substituting the bound, $\log |F| \leq \pi r |\sin \theta| + \log |g|$ yields Substituting the bound, $\log |F| \leq \pi r |\sin \theta| + \log |g|$ yields

(2)
$$
J(r) \leq 2r + (2\pi)^{-1} \int_0^{2\pi} \log |g| d\theta - \log |F(0)|.
$$

Received November 29, 1948; presented to the Society, December 28, 1948.