AN EXTREMAL PROPERTY OF MONOTONE-LIGHT FACTORIZATIONS

BY EARL J. MICKLE

1. Introduction.

1.1. In this paper the topological structure theory of Peano spaces is applied to the isoperimetric inequality. For concepts and results relating to this theory we use as a general reference the book of G. T. Whyburn on Analytic Topology [4] and the book of T. Radó on Length and Area [3]. This latter book will be referred to as [LA].

1.2. Let U denote the positively oriented unit sphere $u^2 + v^2 + w^2 = 1$ in a Euclidean *uww*-space and let T be a continuous mapping from U into a Euclidean *xyz*-space E_3 . Then T may be thought of as a representation of an Fsurface of the type of the 2-sphere (see [LA; II.3.44]). Let us denote by A(T)the Lebesgue area of this surface (see [LA; V.2.3]). Then A(T) may be thought of as a functional of the continuous mapping T.

1.3. Radó [2] has introduced the following concepts and results relating to the isoperimetric inequality. For a continuous mapping T (see 1.2) let i(x, y, z; T) be the topological index-function associated with the mapping T (see Alexandroff-Hopf [1]). The volume V(T) enclosed by the surface represented by T is defined to be

(1)
$$V(T) = \begin{cases} \iiint | i(x, y, z; T) | dx dy dz \text{ if } i(x, y, z; T) \text{ is summable,} \\ +\infty & \text{otherwise,} \end{cases}$$

where the triple integral is extended over the whole xyz-space E_3 . Then V(T) may be thought of as a functional of the continuous mapping T. For the Lebesgue area A(T) and the enclosed volume V(T) we have then (see Radó [2]) the isoperimetric inequality

(2)
$$V(T)^2 \leq A(T)^3/36\pi.$$

1.4. In a forthcoming paper on the isoperimetric inequality J. W. T. Youngs considers unrestricted factorizations of a mapping T in the following sense. T is the product of two continuous mappings f and s, where f is a continuous mapping from U into a Peano space \mathfrak{M} and s is a continuous mapping from \mathfrak{M} into E_3 . For such an unrestricted factorization let C be a generic notation for a proper cyclic element of \mathfrak{M} (see [LA; II.2.10], [LA; II.2.50]) and let r_{σ}

Received July 16, 1948.