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1. Introduction.

1.1. In this paper the topological structure theory of Peano spaces is applied
to the isoperimetric inequality. For concepts and results relating to this
theory we use as a general reference the book of G. T. Whyburn on Analytic
Topology [4] and tile book of T. Rad5 on Length and Area [3]. This latter
book will be referred to as [LA].

1.2. Let U denote the positively oriented unit sphere us q- v" q- w2 1 in
a Euclidean uvw-space and let T be a continuous mapping from U into a Euclid-
ean xyz-space E3. Then T may be thought of as a representation of an F-
surface of the type of the 2-sphere (see [LA; II.3.44]). Let us denote by A(T)
the Lebesgue area of this surface (see [LA; V.2.3]). Then A (T) may be thought
of as a functional of the continuous mapping T.

1.3. Rad5 [2] has introduced the following concepts and results relating to
the isoperimetric inequality. For a continuous mapping T (see 1.2) let i(x, y, z; T)
be the topological index-function associated with the mapping T (see Alex-
androff-Hop [1]). The volume V(T) enclosed by the surface represented by
T is defined to be

() V(T)= fff i(x, y, z; T) dx dy dz if i(x, y, z; T) is summable,

otherwise,

where the triple integral is extended over the whole xyz-space E3 Then V(T)
may be thought of as a functional of the continuous mapping T. For the
Lebesgue area A (T) and the enclosed volume V(T) we have then (see Rad5 [2])
the isoperimetric inequality

(2) V(T) <_ A (T)a/36-.
1.4. In a forthcoming paper on the isoperimetric inequality J. W. T. Youngs

considers unrestricted factorizations of a mapping T in the following sense. T
is the product of two continuous mappings f and s, where f is a continuous
mapping from U into a Peano space 99 and s is a continuous mapping from
992 into E. For such an unrestricted factorization let C be a generic notation
for a proper cyclic element of (see [LA; II.2.10], [LA; II.2.50]) and let rc
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