CONVERGENCE IN AREA

By Tibor Radó

Introduction.

The purpose of this paper is to establish an extension of an important result on convergence in length. In a closed interval I, let there be given continuous functions f(x), $f_n(x)$, such that $f_n(x) \to f(x)$ uniformly in I. Let L(f, I), $L(f_n, I)$ denote the length of the curves y = f(x), $y = f_n(x)$, $x \in I$, respectively. Let $V(f, I), V(f_n, I)$ be the total variations of the functions $f(x), f_n(x)$ respectively in the interval I. Suppose that $L(f, I) < \infty$, $L(f_n, I) < \infty$, $n = 1, 2, \cdots$. Adams and Lewy [1] have established the theorem: if, in addition to the conditions already stated, we have the relation $L(f_n, I) \rightarrow L(f, I)$, then it follows that $V(f_n, I) \to V(f, I)$. This interesting result can be extended readily to curves given in general parametric form. Let x_1 , x_2 , x_3 be Cartesian coordinates in Euclidean three-space. We shall use r to denote the vector with components $[x_1, x_2, x_3]$. Similarly, if $x_1(u)$, $x_2(u)$, $x_3(u)$ are continuous functions on an interval I: $a \leq u \leq b$, then $\mathfrak{x}(u)$ denotes the vector function with components $[x_1(u), x_2(u), x_3(u)]$. Now let there be given, on a fixed interval I: $a \le u \le b$, continuous vector functions $\mathfrak{g}(u)$, $\mathfrak{g}_n(u)$, $n = 1, 2, \cdots$. Then the equations $\mathfrak{x} = \mathfrak{x}(u), \ \mathfrak{x} = \mathfrak{x}_n(u), \ u \in I, \text{ may be considered as representations of curves } C,$ C_n . Let us consider the curve

$$C: \quad \mathfrak{x} = \mathfrak{x}(u) \qquad (u \ \mathfrak{e} \ I).$$

We associate with C three curves C^1 , C^2 , C^3 defined as follows:

$$C^{i}: \quad \mathfrak{x} = \mathfrak{x}_{i}(u) \qquad (u \ \mathfrak{e} \ I),$$

where $\mathfrak{r}_1(u)$, $\mathfrak{r}_2(u)$, $\mathfrak{r}_3(u)$ are the vector functions with components $[x_1(u), 0, 0]$, $[0, x_2(u), 0]$, $[0, 0, x_3(u)]$ and, of course, $[x_1(u), x_2(u), x_3(u)]$ are the components of $\mathfrak{r}(u)$. The curves C^i , j = 1, 2, 3, may be considered as the projections of C upon the coordinate axes. Let $L(\mathfrak{r}, I)$ be the length of C, and similarly let $L(\mathfrak{r}_i, I)$ be the length of C^i . Clearly, $L(\mathfrak{r}_i, I)$ is merely the total variation in I of the component $x_i(u)$ of $\mathfrak{r}(u)$. Let the symbols C_n^i , $L(\mathfrak{r}_n, I)$, $L(\mathfrak{r}_{ni}, I)$ have analogous meaning relative to the curves $C_n : \mathfrak{r} = \mathfrak{r}_n(u)$, $u \in I$. Suppose that $L(\mathfrak{r}, I) < \infty$, $L(\mathfrak{r}_n, I) < \infty$. We have then the following plausible generalization of the theorem of Adams and Lewy: if $\mathfrak{r}_n(u) \to \mathfrak{r}(u)$ uniformly on I and $L(\mathfrak{r}_n, I) \to L(\mathfrak{r}, I)$, then $L(\mathfrak{r}_{ni}, I) \to L(\mathfrak{r}_i, I)$, j = 1, 2, 3 (see [3]). It is natural to ask if analogous theorems hold for surfaces. The case of surfaces given in

Received April 24, 1948; presented to the American Mathematical Society at the meeting in Madison, Wisconsin, September 1948.