CONVERGENCE IN AREA

BY TIBOR RADÓ

Introduction.

The purpose of this paper is to establish an extension of an important result on *convergence in length*. In a closed interval I , let there be given continuous functions $f(x)$, $f_n(x)$, such that $f_n(x) \to f(x)$ uniformly in I. Let $L(f, I)$, $L(f_n, I)$ denote the length of the curves $y = f(x)$, $y = f_n(x)$, $x \in I$, respectively. Let $V(f, I), V(f_n, I)$ be the total variations of the functions $f(x)$, $f_n(x)$ respectively in the interval I. Suppose that $L(f, I) < \infty$, $L(f_n, I) < \infty$, $n = 1, 2, \cdots$. Adams and Lewy $[1]$ have established the theorem: *if, in addition to the condi*tions already stated, we have the relation $L(f_n, I) \to L(f, I)$, then it follows that $V(f_n, I) \to V(f, I)$. This interesting result can be extended readily to curves given in general parametric form. Let x_1 , x_2 , x_3 be Cartesian coordinates in Euclidean three-space. We shall use $\mathfrak x$ to denote the vector with components $[x_1, x_2, x_3]$. Similarly, if $x_1(u), x_2(u), x_3(u)$ are continuous functions on an interval I: $a \leq u \leq b$, then $\mathfrak{r}(u)$ denotes the vector function with components $[x_1(u), x_2(u), x_3(u)]$. Now let there be given, on a fixed interval $I: a \le u \le b$, continuous vector functions $\mathfrak{r}(u)$, $\mathfrak{r}_n(u)$, $n = 1, 2, \cdots$. Then the equations $\mathfrak{x} = \mathfrak{x}(u), \mathfrak{x} = \mathfrak{x}_n(u), u \in I$, may be considered as representations of curves C, C_n . Let us consider the curve

$$
C: \t\mathfrak{x} = \mathfrak{x}(u) \t\t\t (u \mathfrak{e} I).
$$

We associate with C three curves C^1 , C^2 , C^3 defined as follows:

$$
C^i: \qquad \mathfrak{x} = \mathfrak{x}_i(u) \qquad (u \in I),
$$

where $r_1(u)$, $r_2(u)$, $r_3(u)$ are the vector functions with components [x₁(u), 0, 0], $[0, x_2(u), 0]$, $[0, 0, x_3(u)]$ and, of course, $[x_1(u), x_2(u), x_3(u)]$ are the components of $\mathfrak{r}(u)$. The curves C^i , $j = 1, 2, 3$, may be considered as the projections of C upon the coordinate axes. Let $L(\mathfrak{x}, I)$ be the length of C, and similarly let $L(\mathfrak{x}_i, I)$ be the length of C^i . Clearly, $L(\mathfrak{x}_i, I)$ is merely the total variation in I of the component $x_i(u)$ of $\mathfrak{x}(u)$. Let the symbols C_n^i , $L(\mathfrak{x}_n, I)$, $L(\mathfrak{x}_{ni}, I)$ have analogous meaning relative to the curves $C_n : \mathfrak{x} = \mathfrak{x}_n(u), u \in I$. Suppose that $L(\mathfrak{x}, I) < \infty$, $L(\mathfrak{x}, I) < \infty$. We have then the following plausible generalization of the theorem of Adams and Lewy: if $\mathfrak{x}_n(u) \to \mathfrak{x}(u)$ uniformly on I and $L(\mathfrak{x}_n, I) \to L(\mathfrak{x}, I)$, then $L(\mathfrak{x}_{ni}, I) \to L(\mathfrak{x}_i, I), j = 1, 2, 3$ (see [3]). It is natural to ask if analogous theorems hold for surfaces. The case of surfaces given in $L(\mathfrak{x}_n, I) \to L(\mathfrak{x}, I)$, then $L(\mathfrak{x}_n, I) \to L(\mathfrak{x}_i, I)$, $j = 1, 2, 3$ (see [3]). It is natural to ask if analogous theorems hold for surfaces. The case of surfaces given in

Received April 24, 1948; presented to the American Mathemutical Society at the meeting in Madison, Wisconsin, September 1948.