INTEGRAL VALUED ENTIRE FUNCTIONS

By R. CREIGHTON BUCK

1. Introduction. Let I be the set of rational integers. An entire function f(z) is said to be integral valued if $f(n) \in I$ for each $n, n = 0, 1, \cdots$. The class of all such functions forms a ring R. Let R_0 be the subring of R consisting of the integral valued polynomials; there are simple functions—e.g., 2^z —which belong to R but not to R_0 . More generally, any set of conjugate algebraic integers determines such functions. Let $Q(x) = 1 + q_1x + \cdots + q_mx^m = \prod_{i=1}^{m} (1 - \beta_k x)$ be irreducible and have integral coefficients. Since Q(0) = 1, 1/Q(x) has a formal power series with integral coefficients. If P is a polynomial with integral coefficients, then P(x)/Q(x) has a formal expansion $\sum_{i=0}^{\infty} b_n x^n$ where $b_n \in I$ for all n. Expressing these coefficients in terms of the algebraic integers β_k , we have $b_n = \sum_{i=1}^{m} A_k \beta_k^n$ where the A_k are certain complex numbers. The function $f(z) = \sum_{i=1}^{m} A_k \beta_k^n$ is then an integral valued function. Over R_0 , these functions generate a ring $R_1 \subset R$. The general member of R_1 has the form

$$f(z) = P_0(z) + \sum_{1}^{r} P_k(z) \gamma_k^z$$

where P_0 , \cdots , P_r are polynomials (not necessarily in R_0) and the γ_k form one or more complete sets of conjugate algebraic integers. For brevity, we shall refer to such a function as having γ_1^z , γ_2^z , \cdots , γ_r^z as generators. We observe that any function in R_1 is an entire function of exponential type; this class we denote as usual by K. Let K_1 be a subclass of K. The general problem with which this paper deals is that of characterizing the functions belonging to $R \cap K_1$.

We adopt the notation of previous papers [2]: $h(\theta, f)$ is the growth function for the function f, and is defined as $\lim \sup r^{-1} \log |f(re^{i\theta})|$; $K[H(\theta)]$ is the class of functions in K with $h(\theta, f) \leq H(\theta)$, for all θ for which $H(\theta)$ is defined; K(a, c) is the class of f in K such that $h(0, f) \leq a$, $h(\pi, f) \leq a$, and $h(\pm \pi/2, f) \leq c$.

We first observe that the problem of characterizing $K_1 \cap R$ fails to be meaningful if K_1 is too large. Thus, $g(z) \sin \pi z$ is integral valued for any $g \in K$. We therefore restrict K_1 to be a proper subclass of the class $K(a, \pi)$, the critical uniqueness class associated with the functionals $\{T_n\}$ where $T_n(f) = f(n)$. See [2]. In the language used there, we seek to find what sequences of integers are admissible for $\{T_n\}$ and K_1 .

The first result of this nature was established by Pólya, and sharpened by Hardy. (See [17], [10], [11].) Roughly speaking, 2^{z} is the integral valued function of slowest growth which is not a polynomial; more precisely, if $f \in R \cap$

Received April 12, 1948.