FUNCTION CLASSES INVARIANT UNDER THE FOURIER TRANSFORM

By R. J. DUFFIN

This note is a contribution to the following problem: Find function classes characterized by "simple" conditions which are left invariant by Fourier transforms. In a previous note [1] the writer found two such invariant classes defined by Möbius series. In the present note two more classes are exhibited: The first is characterized essentially by the condition $(-xd/dx)^n f(x) \ge 0$, $n = 0, 1, \cdots$, and the second by the condition $(-d/xdx)^n f(x) \ge 0$.

The J_1 class of functions f(x) is defined by the conditions:

(a)
$$(-xd/dx)^n f(x) \ge 0$$

(b) $f(x) \to 0$
(c) $xf(x) \to 0$
(d) $(x < \infty; n = 0, 1, \cdots);$
($x \to +\infty);$
($x \to +\infty);$
($x \to +\infty).$

Let $q(s) = f(e^s)$. Then $(-d/ds)^n q(s) \ge 0$. Such functions have been termed completely monotonic. A fundamental theorem, due essentially to Hausdorff, states that the class of functions completely monotonic in the interval $0 < s < \infty$ is identical with the class q(s) represented by the Laplace-Stieltjes integral

(1)
$$q(s) = \int_0^\infty e^{-st} d\rho(t)$$
 $(s > 0),$

where $\rho(t)$ is a non-decreasing function.

THEOREM 1. The class J_1 is identical with the class of the form

(2)
$$f(x) = \int_0^1 x^{-t} d\rho(t) \qquad (x > 0),$$

where $\rho(t)$ is a non-decreasing function continuous at 0 and 1.

Proof. Relation (1) demands

(3)
$$f(x) = \int_0^\infty x^{-t} d\rho(t) \qquad (x > 1).$$

Obviously if f(x) is contained in J_1 , so also is f(cx) for c any positive constant; thus, $f(cx) = \int_0^\infty x^{-t} d\rho_c(t), x > 1$. If u = cx, then $f(u) = \int_0^\infty u^{-t} dr_c(t), u > c$, where $r_c(t) = \int_0^t c^t d\rho_c(t)$. If c and b are positive constants less than one, then $\int_0^\infty e^{-st} dr_c = \int_0^\infty e^{-st} dr_b$ for $s \ge 0$. Hence, by the uniqueness theorem of the Laplace integral, $r_c(t)$ and $r_b(t)$ are substantially equal. It follows that (3) is actually valid for all x > 0.

Condition (b) obviously is equivalent to $\rho(t)$ being continuous at t = 0. To

Received May 8, 1948; presented to the American Mathematical Society, December 28, 1946.