LIE GROUPS OF GENUS ONE

By Jack Levine

1. Introduction. The genus of a Lie group has been defined by M. S. Knebelman [2] as the difference between its order and nullity, where the nullity of the group is the least number of independent symbols whose successive commutators generate the group. We shall denote a group of order n and genus r by $G_n^{(r)}$.

It is shown in [2] that the constants of structure c_{ik}^i of a $G_n^{(r)}$ must be of the form

(1.1)
$$c_{ik}^{i} = \sum_{\lambda=1}^{r} p_{jk}^{\lambda} s_{\lambda}^{i} + \delta_{i}^{i} u_{k} - \delta_{k}^{i} u_{i} \qquad (r < n-2),$$

where p_{jk}^{λ} are a set of r skew-symmetric tensors and s_{λ}^{i} are a set of r contravariant vectors such that the matrices $||p_{jk}^{\lambda}||$, $||s_{\lambda}^{i}||$ are each of rank r.

Necessary and sufficient conditions on the c_{ik}^i were obtained in [2] in order that a group be of genus 0. These conditions are expressed as

(1.2)
$$\Pi_{jk}^{i} \equiv c_{jk}^{i} - (n-1)^{-1} (\delta_{j}^{i} c_{hk}^{h} - \delta_{k}^{i} c_{hj}^{h}) = 0.$$

Also certain analogies between Π_{ik}^i and the projective connection of an affine space were noted.

In this paper we obtain necessary and sufficient conditions on the c_{ik}^i for the group to be of genus 1. As part of these conditions a comitant W_{ijk}^h is introduced which is analogous to the Weyl projective curvature tensor. For a $G_n^{(0)}$, $W_{ijk}^h \equiv 0$.

2. Necessary conditions. If r = 1 we must have n > 3 due to the condition r < n - 2, and this condition on n is assumed in all summations. Equations (1.1) can then be expressed as

$$c_{ik}^i = p_{ik}s^i + \delta_i^i u_k - \delta_k^i u_i.$$

The necessary conditions are obtained by elimination of p_{ik} , s^i , u_i from (2.1). It is shown in [2] that if u_i is not a zero vector,

$$(2.2) p_{ij}s^i = Nu_i,$$

$$(2.3) (N-1)(p_{ij}u_k+p_{jk}u_i+p_{ki}u_j)=0,$$

$$(2.4) s^i u_i = 0,$$

where N is an arbitrary constant. Equations (2.2)–(2.4) are in fact equivalent to Jacobi's identities

$$(2.5) c_{ik}^{h}c_{hm}^{i} + c_{km}^{h}c_{hi}^{i} + c_{mi}^{h}c_{hk}^{i} = 0.$$

Received December 11, 1947.