SOME RESULTS FOR DIRICHLET SERIES

By V. F. Cowling

1. Introduction. This paper may be regarded as an attempt to extend to Dirichlet series some results proved for Taylor series by the author [1]. These results concern the nature of domains in which a function defined by a Taylor series is regular.

2. We shall be concerned with the ordinary Dirichlet series

$$f(z) = \sum_{n=1}^{\infty} a_n e^{-z \log n}.$$

Let $\sigma_c < \infty$ denote the abscissa of convergence of this series. Suppose l - 1 < h < l, where l is integral and positive but otherwise arbitrary. Denote by D the domain in the *w*-plane, $\psi_2 \leq \arg(w - h) \leq \psi_1$, including the point w = h, where $0 < \psi_1 \leq \pi/2$ and $-\pi/2 \leq \psi_2 < 0$. Suppose a(w) is a function regular in D, with the possible exception of the point at infinity, for which $a(n) = a_n$, $n = 0, 1, \cdots$.

Denote respectively by I_1 , I_2 and C the sides of a contour Γ bounded by the lines $w = h + Re^{i\psi_1}$ and $w = h + Re^{i\psi_2}$, $0 \le R \le R'$, and the arc $\psi_2 \le \arg(w-h) \le \psi_1$ of the circle |w-h| = R' where R' is integral and positive but otherwise arbitrary. It is then simple to show by the Calculus of Residues that (integration being understood in the positive sense)

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{a(w) \exp(-z \log w)}{\exp(2\pi i w) - 1} \, dw = \sum_{n=1}^{R'+l-1} a(n) e^{-z \log n}.$$

Here we take that branch of log w that is real for w real and positive. A similar integral was used by LeRoy and Lindelöf [2] in the case of Taylor series.

Suppose for $w = h + Re^{i\psi}$ in D and $R \ge R_1$ that

(1)
$$|a(h + Re^{i\psi})| < R^{\kappa} \exp\left(-LR \sin\psi\right)$$

for some K and some $0 < L < 2\pi$.

Let

(2)
$$G(z, w) = \frac{a(w) \exp(-z \log w)}{\exp(2\pi i w) - 1}.$$

We proceed to show that

$$\int_c G(z, w) \ dw$$

Received February 10, 1947; in revised form March 17, 1947.