DUALITY IN LINEAR SPACES

BY RICHARD ARENS

1. **Introduction.** Given any convex topological linear space X, we let X^* denote the class of all those linear functionals defined on X which are continuous with respect to the topology of X. We refer to X^* as the *adjoint* of X. One may select a topology t which converts X^* into a convex topological linear space X^{**} . The convexity in X insures that non-zero elements of X represent non-vanishing functionals on X^* according to the formula

$$\xi(f) = f(x)$$
 $(x \in X, f \in X^*).$

A first question is whether the elements of X represent exactly the entire adjoint X^{*i*} of X^{*i} . Let t be called *reflexive* if this is true; then our answer may be stated as follows. Let p be the *weak* topology for X^* ; and let κ be that topology for X^* according to which convergence of functionals means uniform convergence on the convex, weakly compact subsets of X. Then t is reflexive if and only if its family of open sets includes that of p and is included in that of κ (Theorem 2).

Supposing t to be reflexive, we next consider topologizing X^{*t*} . One might ask for a simple condition on a topology u insuring that X^{*t*u} is topologically isomorphic with X. This formulation is too vague, because it admits the following trivial answer: let us simply adopt in X^{*t*} the topology of X. An objection to this ad hoc solution lies in the fact that in topologizing the adjoint, X^{*t*} , of X^{*t} , we have not confined our attention to these two spaces alone. A rule T which associates with each topological linear space a topology for its adjoint, and converting this adjoint into a topological linear space, will be called, somewhat briefly, an assignment of topologies. To illustrate the term and its notation: when T is applied to X we obtain the T-topologized adjoint $X^{*T(X)}$; and when applied to X^{*t} , we obtain $X^{*t*T(X^{*t})}$.

Such an assignment T will be called *covariant* if, whenever there exists a *continuous* linear operation φ from X to another topological linear space Y, then the dual mapping φ^* , from $Y^{*^{T(Y)}}$ to $X^{*^{T(X)}}$, defined by

$$\varphi^*(f)(x) = f(\varphi(x)) \qquad (x \in X, f \in X^*),$$

is also continuous. We remark that the p- and κ -topologies are covariant.

The problem next to be considered can now be formulated. Does there exist any covariant assignment of topologies T such that for any two members X and Y of the class \mathcal{L} of all topological linear spaces, $Y \cong X^{*^{T(X)}}$ if and only if $X \cong Y^{*^{T(Y)}}$?

We have not been able to settle this question for the entire class £; but for Received October 30, 1946.