THE ORTHOGONALITY OF SOME SYSTEMS OF POLYNOMIALS

By J. GERONIMUS

Introduction. Consider a system of polynomials $\{P_n(x)\}_0^\infty$ where

$$P_{n}(x) = \sum_{\nu=0}^{n} a_{n-\nu} b_{\nu} \omega_{\nu}(x), \qquad \omega_{\nu}(x) = \prod_{k=1}^{\nu} (x - x_{k})$$

$$(1) \qquad (\nu = 1, \dots, n; n = 1, 2, \dots),$$

$$P_0 = a_0 b_0 ,$$

 $\{a_k\}_0^{\infty}$, $\{b_k\}_0^{\infty} \neq 0$ and $\{x_k\}_1^{\infty}$ being arbitrary complex numbers. Some types of such systems have been considered by different authors as the table shows.

N	$ x_n $	a_n	b_n	Author	Note
I	0	a_n	b_n	Angelesco [1]	a_n , b_n arbitrary
II	0	$\frac{\alpha_n}{n!}$	$\frac{1}{n!}$	Appell [3]	α_n arbitrary
III	n - 1	$\frac{1}{n!}$	$\frac{(1-e^{\lambda})^n}{n!^2}$	Gottlieb [8]	
IV	n-1	$\frac{1}{n!}$	$\frac{(1-e^{\lambda})^n}{n!\Gamma(\alpha+n+1)}$	Feldheim [5]	
v .	n-1	$\frac{(-1)^n}{n!}$	$\frac{a^{-n}}{n!}$	Poisson- Charlier [12]	
VI	n-1	$\frac{(-a)^n}{n!}$	$\frac{1}{n!}$	Jordan [9], Geronimus [6]	
VII	0	$\binom{\lambda}{n}$	$\binom{\mu}{n}h^n$	Angelesco [2]	
VIII	0	$\frac{(-\lambda)^n}{\mu_n}$	$\frac{1}{n!}$ $\frac{(1 - e^{\lambda})^n}{n!^2}$ $\frac{(1 - e^{\lambda})^n}{n!\Gamma(\alpha + n + 1)}$ $\frac{a^{-n}}{n!}$ $\frac{1}{n!}$ $\binom{\mu}{n}h^n$ $\frac{1}{\mu_n}$	Bateman [4]	$\mu_n = \prod_{i=1}^n (1 - q^i)$ $(\mid q \mid < 1)$
IX			$\frac{(-1)^nq^{n^2+n/2}}{\mu_n}$		$\mu_n = \prod_{i=1}^n (1 - q^i)$ $(q < 1)$

Received February 14, 1947.