HLAWKA'S THEOREM IN THE GEOMETRY OF NUMBERS

BY H. DAVENPORT AND C. A. ROGERS

1. Let K be a convex body in *n*-dimensional space, of volume V, symmetrical **about the origin O.** Hlawka's theorem $[3]$, $[7]$, $[6]$ (actually valid under more general conditions) tells us that there exists ^a lattice, with no point in K other than O, whose determinant does not exceed $V/2\zeta(n)$. Here $\zeta(n) = 1 + 2^{-n}$. $3^{-n} + \cdots$, so that the factor $\zeta(n)$ is of little significance when n is large. In **a** recent paper, Mahler [4] has shown that the number $2f(n)$ can be improved, and that in particular it can be replaced by $3.296 \cdots$. The object of this paper is to obtain some further improvements. Our work was in progress when Dr. Mahler kindly gave us a copy of his paper. Our method is very similar to his, the only essential difference being in our treatment of the case $w > 1$. Our presentation is somewhat different, and as we require Lemma ¹ for the proof of Theorem 2, we have preferred to prove Theorem 1 ab initio.

Let c_n denote the upper bound of V/Δ for all convex bodies K in n dimensions, where Δ is the determinant of any lattice with no point (except O) in K. We prove

THEOREM 1. (a) For $n \geq 3$, we have

(1)
$$
c_n \geq \frac{2}{n} \left(\frac{c_{n-1}^{n/(n-1)} - 1}{c_{n-1}^{1/(n-1)} - 1} \right).
$$

(b) As
$$
n \to \infty
$$
,

 $\lim c_n \geq c$,

where

(2)
$$
\log c = 2(1 - 1/c) \qquad (c > 1).
$$

The numerical value of c is $4.921 \cdots$. Thus, for large n, there exists a lattice with no point other than O in K, whose determinant is less than $V/4.92$.

When K is a sphere, the result provided by Hlawka's theorem has already been substantially improved by Rogers [6]. By a combination of his method with that used in proving Theorem 1, we obtain a further improvement. The result can be expressed in an arithmetical form as follows. Let Q be any positive definite quadratic form in *n* variables of determinant 1, and let $M(Q)$ denote the minimum value of Q for integral values of the variables, not all zero. Let γ_n be the least number such that $M(Q) \leq \gamma_n$ for all such Q.

THEOREM 2. Let $\theta = 0.596 \cdots$ denote the minimum, for $0 < \eta < \pi$, of

(3)
$$
2(\log \pi/\eta)^{-1} \sum_{i=1}^{\infty} e^{-\eta i^2}
$$

Received February 5, 1947.