A THEOREM OF LICHTENSTEIN

By K. O. FRIEDRICHS

In the present note the following theorem of Lichtenstein [8; 34–42] is generalized: Let the function $\rho(x, y)$ be quadratically integrable in a rectangle \Re in the (x, y)-plane, then the function

(1)₂
$$\phi(x, y) = \frac{1}{2\pi} \iint_{\Re} (\log r) \rho(x', y') \, dx' \, dy',$$

or using an operator symbol P

$$\phi(x, y) = P \rho(x, y),$$

possesses almost everywhere second derivatives ϕ_{xx} , ϕ_{xy} , ϕ_{yy} , which are quadratically integrable over any bounded domain. Here $r^2 = (x - x')^2 + (y - y')^2$. It is in particular true that ϕ admits almost everywhere the Laplacian operator Δ and that almost everywhere $\Delta \phi = \phi_{xx} + \phi_{yy} = \rho$.

Precisely, Lichtenstein's statement is this: For almost all y, ϕ possesses a derivative ϕ_x which in its turn is absolutely continuous in x and possesses for almost all x a derivative ϕ_{xx} . Further, for an appropriate set $\mathbb Q$ of measure zero, the derivative ϕ_x is defined in $\Re - \mathbb Q$ and possesses there a derivative ϕ_{xy} with respect to y provided that in forming this derivative only points x, y of the set $\Re - \mathbb Q$ are employed. The same is true for y instead of x. Almost everywhere $\phi_{xx} + \phi_{yy} = \rho$ and $\phi_{xy} = \phi_{yx}$. All derivatives ϕ_x , ϕ_y , ϕ_{xx} , ϕ_{xy} , ϕ_{yy} are quadratically integrable with respect to x and y.

For our generalization of this theorem to the case of $N \geq 2$ independent variables $x = \{x_1, \dots, x_N\}$, we must define the operation

(1)_N
$$\phi(x) = P \rho(x) = -\Omega_N^{-1} \int_{\Re} r^{-N+2} \rho(\bar{x}) d\bar{x} \qquad (N > 2),$$

for quadratically integrable ρ , where \Re is an open bounded region, $r^2 = (x_1 - \bar{x}_1)^2 + \cdots + (x_N - \bar{x}_N)^2$, and Ω_N is the content of the N-dimensional unit-sphere. It is known that $\phi(x)$ is continuous if ρ is continuously differentiable. If a quadratically integrable function ρ is approximated in the mean by continuously differentiable functions ρ^* then, as will be shown, the functions $\phi^* = P\rho^*$ approach in the mean a quadratically integrable limit function ϕ . The operation P is then defined through $P\rho = \phi$.

For the function ϕ defined by $(1)_N$, $(N \geq 2)$, we state

Theorem 1: The function $\phi = P\rho$ for quadratically integrable ρ agrees almost everywhere with a function ϕ^* which for almost all $\{x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_N\}$

Received September 12, 1946.