INTEGRAL CRITERIA FOR SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS

By WILLIAM T. REID

1. **Introduction.** The present paper is concerned with integral criteria for a function to be equal a. e. (almost everywhere) to a solution of a linear differential equation. The criteria involve, in particular, the forward differences $\Delta_h f(x) = f(x+h) - f(x)$, $\Delta_h^p f(x) = \Delta_h [\Delta_h^{p-1} f(x)]$, $p=2,3,\cdots$, of f(x) corresponding to a positive value of h. We shall denote by $o(h^n)$ a generic quantity which is such that $o(h^n)/h^n$ approaches zero as h tends to zero through positive values. The following result is established in §3.

THEOREM I. If f(x) is integrable on an interval (a, b + d), and

(1.1)
$$\int_a^b |\Delta_h^n f(x)| dx = o(h^n),$$

then there exists a polynomial $P_{n-1}(x)$ of degree at most n-1 such that $f(x) = P_{n-1}(x)$ a. e. on (a, b).

This result is a special case of the following theorem proved in §4.

THEOREM II. Suppose that $a_i(x)$, $i = 0, 1, \dots, n$, is of class $C^{(i)}$, and $a_n(x) \neq 0$, on (a, b + d), while g(x) and f(x) are integrable on this interval. If

1.2)
$$\int_a^b \left| \sum_{i=1}^n a_i(x) h^{n-i} \Delta_h^i f(x) + h^n [a_0(x) f(x) + g(x)] \right| dx = o(h^n),$$

then there exists a solution u(x) of the differential equation

1.3)
$$\sum_{i=0}^{n} a_i(x)u^{(i)} + g(x) = 0$$

such that f(x) = u(x) a. e. on (a, b).

The case n=1 of Theorem I is due to Titchmarsh [5]; so far as the author is aware, however, the above indicated generalizations have received no previous attention. The proof of Theorem I given in §3 utilizes the du Bois-Reymond form of the fundamental lemma of the calculus of variations, together with properties of integral means of functions; the pertinent properties of such integral means are listed in §2. Correspondingly, the proof of Theorem II in §4 employs a generalization of the fundamental lemma of the calculus of variations; a discussion of this generalization, which is a slight extension of a result of Hobson [2], is presented in §5. Section 6 is devoted to further remarks on

Received August 31, 1945; presented to the American Mathematical Society, September 16, 1945.