ABEL TRANSFORMS OF TAUBERIAN SERIES

By RALPH PALMER AGNEW

1. Introduction. Let $u_0 + u_1 + \cdots$ be a series of complex terms satisfying the Tauberian condition

(1.1)
$$n |u_n| < K$$
 $(n = 0, 1, 2, \cdots).$

Let $\sigma(t)$ denote the Abel transform of Σu_n :

(1.2)
$$\sigma(t) = \sum_{k=0}^{\infty} t^k u_k \qquad (0 < t < 1).$$

Let L denote the set of limit points of the sequence s_0 , s_1 , \cdots of partial sums of Σu_n . Let L_A denote the set of limit points of the Abel transform $\sigma(t)$; $z'' \in L_A$ if there is a sequence t_1 , t_2 , \cdots such that $0 < t_n < 1$, $t_n \to 1$, and $\sigma(t_n) \to z''$ as $n \to \infty$. If $\sigma(t) \to \sigma$ as $t \to 1$, then Σu_n is summable to σ by Abel's method A; but it is not assumed that Σu_n is summable A.

Hadwiger [1] proved that each of the following assertions is true when

(1.3)
$$\rho = 1.0160 \cdots$$

and false when

$$(1.4) \qquad \qquad \rho < .4858 \cdots .$$

ASSERTION 1.1. If Σu_n is a series satisfying the Tauberian condition $n |u_n| < K$, then to each $z' \in L$ corresponds a $z'' \in L_A$ such that

$$|z'-z''| \leq \rho \limsup_{n\to\infty} n |u_n|.$$

ASSERTION 1.2. If Σu_n is a series satisfying the Tauberian condition $n |u_n| < K$, then to each $z'' \in L_A$ corresponds a $z' \in L$ such that (1.5) holds.

As Hadwiger pointed out, his result implies that $L = L_A$ when Σu_n is a series satisfying the Tauberian condition $nu_n \to 0$. A Tauberian theorem of Littlewood [2] states that if Σu_n satisfies the weaker Tauberian condition (1.1) and Σu_n is summable A to σ , then Σu_n converges to σ . This implies that if Σu_n satisfies (1.1) and L_A contains exactly one point, then $L = L_A$. Hadwiger's result shows that (1.1) does not imply universal identity of L and L_A ; for otherwise the assertions would be true when $\rho = 0$.

It is the object of this note to prove the following theorem which gives the least constant ρ for which Assertion 1.1 is true.

Received August 4, 1944; presented to the American Mathematical Society August 12, 1944.