SYSTEMS OF LINEAR EQUATIONS OF ANALYTIC TYPE

By I. M. Sheffer

1. Introduction. A linear problem concerning analytic functions is often expressed in terms of the power series coefficients of the functions; this leads the problem to a system of linear equations, in the coefficients, of the following form:

(1.1)
$$A_n[X] \equiv \sum_{k=0}^{\infty} a_{nk} x_k = c_n \qquad (n = 0, 1, \dots),$$

where X represents the sequence $\{x_n\}$. We denote by α the system of linear forms appearing on the left side of (1.1).

Obvious examples of (1.1) come from linear differential and difference equations. An interesting special problem leading to a system (1.1) is the problem of Takenaka [1], [4], [5] wherein a sequence $\{a_n\}$ lying in $|z| \leq 1$ is given, and it is required to find the largest number r such that every function of exponential type less than r is identically zero if $f^{(n)}(a_n) = 0$ for all $n \geq 0$. If we set f(z) = 1

$$\sum_{n=0}^{\infty} x_n \cdot z^n / n!, \text{ the conditions } f^{(n)}(a_n) = 0 \text{ become}$$

$$\sum_{k=0}^{\infty} (a_n^k/k!)x_{n+k} = 0 \qquad (n = 0, 1, \cdots),$$

and this is of type (1.1). It has the further property of being of *triangular form*; that is, in the n-th equation no x_i of index less than n occurs.

The general triangular system can be written

(1.2)
$$A_n[X] \equiv \sum_{k=0}^{\infty} a_{n,n+k} x_{n+k} = c_n \qquad (n = 0, 1, \cdots).$$

A particular but important case of (1.2) was investigated by Perron [3] in extending a classical result of Poincaré on the asymptotic character of solutions of a linear recurrence equation.

Taking cognizance of the fact that the x_n 's are power series coefficients, we introduce the

DEFINITION. By the type of the sequence $\{x_n\}$ is meant the number $((x_n))$, where

$$(1.3) ((xn)) \equiv \lim \sup |x_n|^{1/n}.$$

(The notation $((x_n))$ is less cumbersome than the "lim sup", especially when the fractional exponent is considered.)

Two important problems concerning system (1.1) are these: (i) To determine the range of validity of the transformation from $\{x_n\}$ to $\{c_n\}$. (ii) To determine,

Received September 3, 1943; presented to the American Mathematical Society December 28, 1942.