THE FACTORIZATION OF RANK TENSORS
By T. L. WapE

Let C{}) = C{:{*..> be an idempotent numerical tensor associated with an
n-dimensional coordinate system; that is, C{i) is an absolute numerical tensor

satisfying the relation

) Cimy-CH = CF .

In connection with the algebra determined by Cf;} there is the numerical in-
variant r, , the rank of C{;} , which in general we shall denote simply by r. It
is defined [1], [2] as the greatest value of k for which the tensor
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does not vanish. The rank tensor of C{}} , by means of which the inverse and
determinant of a tensor A{}) are formed, is
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As shown in [2; §2],
4) =C{
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Of considerable use is the fact that the rank tensor factors into the product of
a contravariant numerical tensor and a covariant numerical tensor:
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(5) Ciniiin = c.C ' eCli e tin (c # 0).

We should recognize that we may have a certain choice of freedom in regard to
these factors. Let C%%::::%" be a non-zero component of the rank tensor; there
will be more than one choice of the subscript labels and of the superscript labels.
Once our choice has been made
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(6) Cc = C.,‘,-..-;, £ 0, C * o= C-“l...y, ! 5 C(;,)...(,‘,) = C(;’,)..:(i,) .

Thus for C¢;) the immanant [3] I{}} = 3(8i:8;* 4 6:28:?), r = 3 forn = 2. Choose
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(ﬁl , B2, /33) = (111 12) 22) and ('Yl » V2 73) = (11’ 127 22) Then ¢ = %7 and
the factorization of the rank tensor of I{}] is given by
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