THE SPAN OF MULTIPLY CONNECTED DOMAINS

By Menahem Schiffer

1. Let D_n be a domain in the z-plane, containing the point $z = \infty$ and bounded by *n* continua C_{ν} ($\nu = 1, \dots, n$). A function F(z) belongs to the family $\phi(D_n)$, if it is univalent and regular in D_n , the point $z = \infty$ excepted, at which it has the development

(1)
$$F(z) = z + \frac{A_2}{z} + \frac{A_3}{z^2} + \cdots$$

There exists a function $f(z) \subset \phi(D_n)$, mapping D_n on a domain bounded by slits parallel to the real axis. It can be characterized by the following extremal property [5]:

Among all functions $F(z) \subset \phi(D_n)$, f(z) yields the maximal value of $\Re\{A_2\}$.

For the function $g(z) \subset \phi(D_n)$, mapping D_n on a domain bounded by slits parallel to the imaginary axis, an analogous result holds, namely:

Among all functions $F(z) \subset \phi(D_n)$, g(z) yields the minimal value of $\Re\{A_2\}$. The functions

(2)
$$f(z) = z + \frac{a_2}{z} + \frac{a_3}{z^2} + \cdots, \quad g(z) = z + \frac{b_2}{z} + \frac{b_3}{z^2} + \cdots$$

will be called henceforth the *slit functions* of D_n .

The number

(3)
$$S(D_n) = \Re\{a_2 - b_2\}$$

gives the breadth of the interval in which $\Re\{A_2\}$ varies for all functions of $\phi(D_n)$. $S(D_n)$ is a functional of D_n and will be called *the span of* D_n . The aim of this paper is to discuss some of its properties and to connect this number with other characteristics of the domain.

In this chapter some elementary theorems on $S(D_n)$ will be recalled. Let us remark first:

I. The span is a non-increasing function of the domain.

This theorem is obvious; for suppose $D_n \subset D'_m$, then $\phi(D'_m) \subset \phi(D_n)$; hence, the interval of variation of $\Re\{A_2\}$ is not smaller for D_n than for D'_m . This proves the assertion.

II. The span of all domains which can be mapped on each other with the aid of univalent and normalized functions $p(z) = z + p_1 + p_2/z + \cdots$ is the same.

Indeed, take $z = z(\zeta) = \zeta + \pi_1 + \pi_2/\zeta + \cdots$ as the univalent function mapping Δ_n in the ζ -plane on D_n in the z-plane. $F(z) \subset \phi(D_n)$ only if $F[z(\zeta)]$ –

Received October 8, 1942.