n-TO-ONE MAPPINGS OF LINEAR GRAPHS

By Pavr W. GILBERT

1. Introduction. An n-to-1 continuous mapping is one for which every inverse
image consists of exactly n points. Such mappings have been considered by
O. G. Harrold [2], who showed that no 2-to-1 mapping can be defined on an are.
(In general, we shall use the term mapping to mean a continuous mapping.)
J. H. Roberts [5] extended this result to a closed 2-cell and proved other theorems
concerning 2-to-1 mappings defined over complete metric spaces. A paper by
Roberts and Venable Martin [3] deals with such mappings of 2-dimensional
manifolds. In a second paper [1] Harrold studied n-to-1 mappings on connected
linear graphs.

Using the methods developed by Roberts, this paper considers first the ques-
tion of defining a 2-to-1 mapping of any linear graph A. It is shown that unless
the Euler characteristic x(4) is even such a mapping cannot be defined on A.
However, if x(4) is odd, the following analogous question can be investigated.
Does there exist a mapping of A which is 2-to-1 except that one inverse image
consists of a single point? T is defined as the class of all mappings T defined
over linear graphs, where T is either exactly 2-to-1 or else 2-to-1 except that one
inverse image consists of a single point. In §3, it is shown that a mapping of
class T' can be defined on any linear graph which is a boundary curve and that
any connected graph is the image of a boundary curve under some T belonging
to I'. In §4, the problem of the definition of n-to-1 mappings on a linear graph
is considered. It is shown that if a mapping of class I' can be defined on a linear
graph A4, then 4 admits an exactly n-to-1 mapping, for all n = 2.

2. Two-to-one mappings. Let T bc an exactly 2-to-1 mapping defined over
a linear graph A. (A linear graph is the sum of a finite number of arcs such that
if a point p is common to two of the arcs, then p is an end point of each of them.
Considering the end points as vertices and the ares as 1-cells, we have a 1-
dimensional complex.) The set of inverse images under 7' is an upper semi-
continuous collection G of elements filling 4, such that every element of G is a
pair of points. For each point z in A, let s(z) be the other point in the element.
For any subset M of A, let s(M) be the set of all points s(x) for which z is in M.
Let f(x) = p(x, s(x)), where p is the metric in A. Let K be the subset of A con-
sisting of the points at which f is continuous. It follows from the upper semi-
continuity of G that as x approaches a point ¢ along an arc in K, f(x) approaches
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