POSITIVE DEFINITE FUNCTIONS ON SPHERES

By I. J. Schoenberg

1. Introduction. Let S_2 denote the ordinary spherical shell of radius one and center o and let p_1, p_2, \dots, p_n be n arbitrary points of S_2 . Let $p_i p_k$ denote the spherical distance between the points p_i, p_k . For n real variables x_1, x_2, \dots, x_n we have the following inequality

(1.1)
$$\left|\sum \overrightarrow{op_i} \cdot x_i\right|^2 = \sum_{i,k=1}^n \cos\left(p_i p_k\right) x_i x_k \ge 0,$$

which is equivalent to the determinant inequality

$$\det |\cos (p_i p_k)|_{1,n} \ge 0$$

for arbitrary points p_i and arbitrary n. This property of the function $g(t) = \cos t$ in relation to the space S_2 is expressed by saying that $\cos t$ is positive definite in S_2 . The general definition is as follows. Let M be a metric space with the distance function pq. A real continuous function g(t) $(0 \le t \le \text{diameter of } M)$ is said to be positive definite (p. d.) in M if we have

(1.2)
$$\sum_{i,k=1}^{n} g(p_i p_k) x_i x_k \ge 0,$$

for any n points p_1, \dots, p_n of M, arbitrary real x_i , and all $n = 2, 3, \dots$.

We denote this class of functions by the symbol $\mathfrak{P}(M)$. It enjoys the following useful closure properties:¹

I. If $g_1(t) \in \mathfrak{P}(M)$, $g_2(t) \in \mathfrak{P}(M)$, also $c_1g_1(t) + c_2g_2(t) \in \mathfrak{P}(M)$, provided $c_1 \ge 0$, $c_2 \ge 0$.

II. The same assumptions imply also that $g_1(t)g_2(t) \in \mathfrak{P}(M)$.

III. If $g_n(t) \in \mathfrak{P}(M)$, $g_n(t) \to g(t)$ as $n \to \infty$, and g(t) is continuous, then also $g(t) \in \mathfrak{P}(M)$.

In the present note we are concerned with the classes $\mathfrak{P}(S_m)$ and $\mathfrak{P}(S_{\infty})$ corresponding to the unit spheres in the Euclidean space E_{m+1} and the Hilbert space H respectively.

Returning to S_2 , we have noticed that $\cos t \in \mathfrak{P}(S_2)$. It will be shown below that also $P_n(\cos t) \in \mathfrak{P}(S_2)$, where P_n is a Legendre polynomial. By the above mentioned closure properties it is now apparent that also

(1.3)
$$g(t) = \sum_{n=0}^{\infty} a_n P_n(\cos t) \,\epsilon \, \mathfrak{P}(S_2),$$

provided $a_n \ge 0$ $(n = 0, 1, \dots)$ and $\sum a_n$ converges. This formula will be shown to furnish the most general element of $\mathfrak{P}(S_2)$.

Received August 25, 1941; presented to the American Mathematical Society, September 11, 1940.

¹See [6], §2. Numbers in brackets refer to the bibliography at the end of the paper.