SIMPLE EXPLICIT EXPRESSIONS FOR GENERALIZED BERNOULLI
NUMBERS OF THE FIRST ORDER

By H. S. VANDIVER

Many different explicit expressions have been given for the Bernoulli numbers,
and in many ways the simplest is the following, due to Kronecker:!
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where
Sn—l(a) = On—l + ln-l + 2n—1 + Ve + (a _ l)n—l’ 00 — 1,

the b’s being defined by the recursion formula (b + 1)* = b,, n > 1, where
after expansion by the binomial theorem we set b* = b; .

In the present note we shall consider what is called by the writer the gen-
eralized Bernoulli number of the first order,?

@) (mb + k)" = ba(m, k),

where this is to be interpreted symbolically as in the expression involving b
above, and where m and k are integers, m = 0. We have, obviously, b, =
b.(1, 0).

We shall derive explicit expressions for this generalized number which include
(1) as a special case, and a number of more general forms for (1). It will be
shown that these explicit expressions will yield a number of properties of the
generalized Bernoulli numbers which include most of the known arithmetical
properties of the ordinary Bernoulli numbers.

Our point of departure is the formula?

r—1

3) (b(m, k) + rm)"*" — buya(m, k) = m(n + 1) go (tm + k)*;

another proof was given by the writer.* Then, in particular, the special case of
this when r = 1, which may be written

(4) (b(m, k) + m)"™ — baa(m, k) = m(n + DK,
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