RIESZ SUMMABILITY METHODS OF ORDER r, FOR $\Re(r) < 0$

By G. E. Forsythe

Given a series $\sum_{n=0}^{\infty} u_n$ of complex terms and a complex parameter r, whose real part will be denoted by $\Re(r)$, let

(1)
$$\alpha_n = \sum_{k=0}^{n-1} \left(1 - \frac{k}{n}\right)^r u_k$$
 $(n = 1, 2, ...),$

and let

$$\beta(t) = \sum_{k=0}^{\lfloor t \rfloor - 1} \left(1 - \frac{k}{t} \right)^r u_k \qquad (1 \le t < \infty).$$

By a^r , where a > 0, will always be meant $\exp[r \log a]$, where $\log a$ is given its real value. If $\lim_{n \to \infty} \alpha_n = L$, then $\sum u_n$ is said to be summable- A_r to L. If $\lim_{t \to \infty} \beta(t) = L$, then $\sum u_n$ is said to be summable- B_r to L. These summability methods are due to M. Riesz, and this notation is due to Agnew.¹

If $-1 < r \leq 1$, then A_r , B_r and the Cesàro method C_r are all equivalent,² while for some values of r > 1, A_r and B_r are not equivalent.³ For $\Re(r) < -1$, A_r and B_r are not equivalent.⁴ For other values of r, the question of the equivalence of A_r and B_r seems not to be discussed in the literature.

The object of this note is to give a criterion for the equivalence of A_r and B_r for $\Re(r) < 0$, based on Agnew's work, and to apply this criterion to show that A_{-1+ih} and B_{-1+ih} $(-\infty < h < \infty)$ are equivalent if and only if h = 0. It follows⁵ that A_{-1} can take the position r = -1 in the scale of Cesàro summability methods C_r .

Let $\varphi_r(x) = \sum_{n=1}^{\infty} n^r x^n$, for |x| < 1. $\varphi_r(x)$ has a simple zero at the origin, so that we can define the coefficients $\{e_n^{(r)}\}$ by

(2)
$$f_r(x) = \frac{1}{\varphi_r(x)} - \frac{1}{x} = \sum_{n=0}^{\infty} e_n^{(r)} x^n, \quad \text{for } |x| < R, R > 0.$$

Let $e_{-1}^{(r)} = 1$, for all r.

Received January 17, 1941; presented to the American Mathematical Society, October 26, 1940. The author is a Sigma Xi Fellow from Swarthmore College.

¹ R. P. Agnew, On Riesz and Cesdro methods of summability, Transactions of the American Mathematical Society, vol. 35(1933), pp. 532-548. (See this paper for references to Riesz.)

² Agnew, op. cit., p. 544; and M. Riesz, Sur l'équivalence de certaines méthodes de sommation, Proceedings of the London Mathematical Society, (2), vol. 22(1923-24), pp. 412-419; p. 418.

³ Agnew, loc. cit., Theorem 4.4, and Riesz, loc. cit., p. 418.

⁴ Agnew, loc. cit., Theorem 10.2.

⁵ Agnew, loc. cit., p. 544.