FUNCTIONS OF BOUNDED VARIATION AND NON-ABSOLUTELY CONVERGENT INTEGRALS IN TWO OR MORE DIMENSIONS

By R. L. Jeffery

1. Introduction. This paper originated in an attempt to extend to two or more dimensions a property which completely characterizes a function of bounded variation in one dimension. It has been shown elsewhere ${ }^{1}$ that a necessary and sufficient condition that a function $F(x)$ be of bounded variation is that there exist a summable function $f(x)$ and a sequence of summable functions $s_{n}(x)$ tending to $f(x)$ with $\int_{e} s_{n} d x$ bounded in n and e for which

$$
\begin{equation*}
F(x)=\lim _{n \rightarrow \infty} \int_{a}^{x} s_{n} d x . \tag{1}
\end{equation*}
$$

We carry this idea over to a function $F(x, y)$ of the two real variables x and y by saying that $F(x, y)$ is in class V_{1} on the rectangle $R=(0,0 ; a, b)$ if there exist a single-valued function $f(x, y)$ and a sequence of summable functions $s_{n}(x, y)$ tending to $f(x, y)$ such that $\int_{e} s_{n} d x d y$ is bounded in n and e, and for which

$$
\begin{equation*}
F(x, y)=\lim _{n \rightarrow \infty} \int_{0}^{y} \int_{0}^{x} s_{n} d x d y \tag{2}
\end{equation*}
$$

The corresponding statement for functions of more than two variables is obvious. Since the function $f(x, y)$ is the limit of a sequence of measurable functions, it is measurable, and it will be shown that $f(x, y)$ is summable. Hence (2) is a direct extension of (1). It will also be shown that a function in class V_{1} on R has what have come to be called bounded variation properties: It can be represented as the difference of two non-decreasing ${ }^{2}$ functions; consequently the set of discontinuities of $F(x, y)$ has zero measure, and the surface $z=F(x, y)$ has a tangent plane almost everywhere; if ω is a rectangular interval with sides parallel to the coorrdinate axes, then the function of intervals $F(\omega)$ associated with $F(x, y)$ by the relation $F(\omega)=\lim \int_{\omega} s_{n} d x d y$ is additive, ${ }^{3}$ of bounded variation, and

[^0]
[^0]: Received December 10, 1938; in revised form, October 11, 1939.
 ${ }^{1}$ Jeffery, Functions defined by a sequence of integrals and the inversion of approximate derived numbers, Transactions of the American Mathematical Society, vol. 41(1937), p. 175, Theorem IV.
 ${ }^{2}$ Non-decreasing in the sense of Hobson. If $x_{2} \geqq x_{1}, y_{2} \geqq y_{1}$, then $F\left(x_{2}, y_{2}\right) \geqq F\left(x_{1}, y_{1}\right)$.
 ${ }^{3} \mathrm{~A}$ function of intervals $F(\omega)$ is additive on R if $F\left(\omega_{1}+\omega_{2}\right)=F\left(\omega_{1}\right)+F\left(\omega_{2}\right)$ whenever ω_{1}, ω_{2}, and $\omega_{1}+\omega_{2}$ are intervals on R. A function of sets $F(e)$ is additive if for every pair of disjunct sets $e_{1}, e_{2}, F\left(e_{1}+e_{2}\right)=F\left(e_{1}\right)+F\left(e_{2}\right) . \quad F(e)$ is completely additive if for every infinite sequence e_{1}, e_{2}, \cdots of disjunct sets $F\left(\Sigma e_{i}\right)=\Sigma F\left(e_{i}\right)$.

