PRESERVATION OF PARTIAL LIMITS IN MULTIPLE SEQUENCE TRANSFORMATIONS ## By Hugh J. Hamilton - 1. **Introduction.** Problems (iii) and (iv) in §1.4 of 1 H₁ were solved in that paper only for $s_{k^2} = 0$. It is the purpose of the present paper to give complete solutions. Existence of the transform σ_m is assumed for each m. - 2. Additional notations and definitions. Let X and Y denote classes of sequences. The notation $X \to Y$ row reg shall signify row regularity of the transformation $X \to Y$ in case each of X and Y is the class of regularly convergent sequences, and ultimate row regularity in all other cases in question. (See §1.4 of H_1 .) Thus² NS RC \to RC row reg will mean NS RC \to RC with $\sigma_{k^2} = s_{k^2}$ for all k^2 . The notation NS RC \to RC ul row reg shall mean NS RC \to RC with $\sigma_{k^2} = s_{k^2}$ for all k^2 sufficiently large. Consider the matrix $||b_{mk}||$, where $b_{mk} = a_{mk}$ $(k \neq m)$, and $b_{mm} = a_{mm} - 1$. Define the sequence $\{\tau_m\}$ by the equations $$\tau_m = \sum_{k=1}^{\infty} b_{mk} s_k \equiv \sigma_m - s_m,$$ and let NS $X^* \to Y$ denote NS $\{\tau_m\}$ be of class Y whenever $\{s_k\}$ is of class X. 3. List of theorems (first form). The following theorems are obvious. NS RC, NS BURC, NS URC \rightarrow URC row reg are, respectively, NS RC, NS BURC, NS URC-* \rightarrow URCRN. NS RC, NS BURC \rightarrow BURC row reg are, respectively, NS RC, NS BURC-* \rightarrow BURCRN. $NS\ URC \rightarrow BURC\ row\ reg\ are\ NS\ URC \rightarrow B\ and\ NS\ URC-^* \rightarrow URCRN.$ NS $RC \rightarrow RC$ ul row reg are NS RC-* $\rightarrow RCURN$. NS BURC, NS URC \rightarrow RC row reg are, respectively, NS BURC, NS URC \rightarrow RC, and, respectively, NS BURC, NS URC-* \rightarrow URCRN. $NS \ RC \rightarrow RC \ row \ reg \ are \ NS \ RC-* \rightarrow RCRN.$ Received October 28, 1938. - 1 H₁ will denote the author's paper, Transformations of multiple sequences, this Journal, vol. 2(1936), pp. 29-60. The present paper assumes familiarity with the contents of H₁, the ideas, terminology, notations, and results of which are freely used without further comment. - ² NS shall abbreviate conditions necessary and sufficient that.