CHANGE OF DIMENSION IN SEQUENCE TRANSFORMATIONS

By Hugh J. Hamilton

$\mathrm{In}^{1} \mathrm{H}_{1}$ were derived conditions on the $2 n$-dimensional matrix of complex numbers $\left\|a_{m_{1} m_{2} \cdots m_{n} k_{1} k_{2} \cdots k_{n}}\right\|$ (n arbitrary) necessary and sufficient for the transforming of all n-dimensional sequences $\left\{s_{k_{1} k_{2} \cdots k_{n}}\right\}$ of class U into n-dimensional sequences $\left\{\sigma_{m_{1} m_{2} \cdots m_{n}}\right\}$ of class V, by means of the relation

$$
\sigma_{m_{1} m_{2}} \cdots m_{n}=\sum_{k_{1}, k_{2}, \cdots, k_{n}=1}^{\infty} a_{m_{1} m_{2} \cdots m_{n} k_{1} k_{2} \cdots k_{n}} s_{k_{1} k_{2}} \cdots k_{n},
$$

for each U and each V of a set of 16 classes of sequences of complex numbers. It is the purpose of this note to point out that no use is made, in the course of the proofs in H_{1}, of equality between the dimension of the s-sequence and that of the σ-sequence, and consequently that the results, if properly interpreted, are quite valid for ($n+l$)-dimensional matrices $\left\|a_{m_{1} m_{2} \cdots m_{l} k_{1} k_{2} \cdots k_{n}}\right\|$ associated with transformations of the type

$$
\sigma_{m_{1} m_{2}} \cdots m_{l}=\sum_{k_{1}, k_{2}, \cdots, k_{n}=1}^{\infty} a_{m_{1} m_{2} \cdots m_{l} k_{1} k_{2} \cdots k_{n}} s_{k_{1} k_{2}} \cdots k_{n},
$$

where l and n are independently arbitrary.
The only alterations which need to be made in H_{1} to permit this interpretation follow.

Page 29.

Line 1. Replace "n-tuple" by "multiple".
Line 4. Replace n by l.
Line 5. Replace "another such, homologous to m", by "an ordered set of n positive, integral variables".

Line 16. Replace m^{1}, m^{2} by k^{1}, k^{2}.
Line 18. Replace "The corresponding" by "A single".

Page 30.

Line 15. Before $\pi(m)$, insert " $l=n$, and"; and before "then", insert " μ being the homologue in m of κ in k ".

Line 23. Before "under", insert "and $l=n$ ".
Line 26. Before "under", insert "and $l=n$ ".

Page 31.

Line 19. Before "and", insert "in all, $l=n$ ".
Received November 29, 1937; presented to the American Mathematical Society, April 16, 1938.
${ }^{1}$ In this note H_{1} will denote the paper, Transformations of multiple sequences, by Hamilton, this Journal, vol. 2(1936), pp. 29-60.

