THE MAPPING OF BETTI GROUPS UNDER INTERIOR TRANSFORMATIONS

By G. T. WHYBURN

1. In this paper results will be established from which it follows that the one-dimensional rational Betti group of a compact metric set A under any interior transformation on A maps homomorphically onto the corresponding group of the image of A provided the one-dimensional Betti number $p^1(A)$ is finite. Thus in any case the one-dimensional Betti number of a compact set is not increased when the set undergoes an interior transformation. This presents, in part, a solution to a problem proposed by Eilenberg. However, by making use of what are termed *nodal subsets* of a compact set, we are able to obtain results of considerably increased generality and precision.

We begin with an elementary characterization of interior transformations.

2. THEOREM. Let A and B be compact and T(A) = B be continuous. In order that T be an interior transformation, it is necessary and sufficient that for any $\epsilon > 0$ there exist a $\delta > 0$ such that for any $y \in B$ and any $x \in T^{-1}(y)$, $T[V_{\epsilon}(x)] \supset V_{\delta}(y)$.

Proof. To prove the sufficiency, let U be any open set in A, let T(U) = V. Let $y \in V$, $x \in U \cdot T^{-1}(y)$ and let $\epsilon > 0$ be chosen so that $V_{\epsilon}(x) \subset U$. Then by hypothesis $T[V_{\epsilon}(x)] \supset V_{\delta}(y)$ for some $\delta > 0$. This gives

$$V = T(U) \supset T[V_{\epsilon}(x)] \supset V_{\delta}(y)$$

and hence V is open in B.

To establish the necessity of the condition, suppose on the contrary that for some $\epsilon > 0$ there exist a sequence y_i in B, $y_i \to y$ ϵ B, a sequence x_i in A, $x_i \to x$ ϵ $T^{-1}(y)$, x_i ϵ $T^{-1}(y_i)$, and a sequence of numbers $0 < \delta_i \to 0$ such that for no i does $T[V_{\epsilon}(x_i)] \supset V_{\delta_i}(y_i)$. But now $T[V_{\frac{1}{2}\epsilon}(x)] = V$ is open and contains

Received October 30, 1937.

- ¹ A continuous transformation T(A) = B is *interior* provided every open set in A maps into an open set in B. See Stoïlow, Annales Scientifiques de l'Ecole Normale Supérieure, vol. 63 (1928), pp. 347-382; we follow the usual custom of omitting Stoïlow's second condition that no continuum in A map into a single point in B.
- ² For the case of this result where A is a graph or a 1-dimensional locally connected continuum, see my paper *Interior transformations on compact sets*, this Journal, vol. 3 (1937), pp. 370-381.
 - ³ Fundamenta Mathematicae, vol. 24 (1935), p. 175.
- 4 We employ the notation $V_r(X)$ for the ϵ -neighborhood of the set X, i.e., the set of all points y such that $\rho(x, y) < r$ for some $x \in X$.