ON IWASAWA THEORY OF CRYSTALLINE REPRESENTATIONS

DENIS BENOIS

CONTENTS

§0. Introduction	211
§1. Preliminaries	216
1.1. Rings of <i>p</i> -adic periods	216
1.2. Classification of <i>p</i> -adic representations	218
1.3. Computation of Galois cohomology	
§2. The explicit reciprocity law of Coleman	
2.1. The Kummer map	223
2.2. The isomorphism $h^2: H^2(C^{\cdot}(\mathbb{O}_{K_n}(1))) \simeq H^2(G_{K_n}, \mathbb{Z}_p(1)) \ldots$	228
2.3. The explicit reciprocity law for $\mathbb{Q}_p(1)$	
§3. The functions $E_{k,n}$	
3.1. Construction of $E_{k,n}$	
3.2. The residue formula for $E_{k,n}$	
§4. Construction of families of points	
4.1. Preliminaries	
4.2. The homomorphisms $\Sigma_{T,k,n}$	
§5. Explicit reciprocity law	
5.1. Cohomological pairing	
5.2. Interpolation of exponential maps	
5.3. The explicit reciprocity law of Perrin-Riou	

§0. Introduction

0.1. In his paper [F2], J.-M. Fontaine worked out a general approach to the classification of p-adic representations of local fields. His method is based on the relation between local fields of characteristic zero and functional local fields, given by the field of norms functor (see [Win]). More precisely, Fontaine established an equivalence between the category of \mathbb{Z}_p -representations of a local field of characteristic zero and the category $\Gamma \Phi \mathbf{M}_{\mathbb{Q}_K}^{\text{\'et}}$ of étale modules over a 2-dimensional local ring \mathbb{Q}_K , equipped with a Frobenius and a continuous action of the cyclotomic Galois group.

Received 12 May 1998. Revision received 29 November 1999. 2000 *Mathematics Subject Classification*. Primary 11S15; Secondary 11R23.

Author partially supported by Russian Foundation for Fundamental Investigations grant number 97-01-00058-a and by Volkswagen Forschung.