FORMAL CHOW GROUPS, p-DIVISIBLE GROUPS, AND SYNTOMIC COHOMOLOGY

TAKAO YAMAZAKI

CONTENTS

1.	Introduction	359
2.	Syntomic complex	363
3.	Calculation of PD-algebra	368
4.	Surjectivity of symbol map	370
5.	The Leray spectral sequence	374
6.	Syntomic cohomology and <i>p</i> -divisible groups	379
7.	<i>K</i> -cohomological functor and <i>p</i> -divisible groups	384
Αŗ	ppendix	386

1. Introduction. Let K be an absolutely unramified complete discrete valuation field of mixed characteristic (0, p) with perfect residue field k, and V a smooth projective variety over K. In this article, we consider the Chow groups $CH^r(V)$ in the infinitesimal method, which was proposed by Spencer Bloch (cf. [5, p. 24]). We review this method in what follows.

First of all, recall the modified version of the Bloch-Quillen formula (cf. [16])

$$\mathrm{CH}^r(V) \otimes \mathbb{Z}\left[\frac{1}{(r-1)!}\right] \cong H^r\left(V, \mathcal{K}^M_{r,V}\right) \otimes \mathbb{Z}\left[\frac{1}{(r-1)!}\right],$$

where, for any scheme Z, we denote by $\mathcal{K}^M_{r,Z}$ the Zariski sheaf of Milnor K_r -groups on Z, that is, the sheafification of the presheaf that associates the Milnor K-group $K^M_r(\Gamma(U,\mathbb{O}_U))$ to an open subscheme U of Z. Here, for any commutative ring R, we denote by $K^M_r(R)$ the group $R^{*\otimes r}/H$, where H is the subgroup of $R^{*\otimes r}$ generated by elements of the form $x_1\otimes\cdots\otimes x_r$ with $x_i+x_j=0$ or 1 for some $i\neq j$. If r is equal to the dimension of V, the above formula is valid without tensoring $\mathbb{Z}[1/(r-1)!]$ (cf. [10]).

Now assume that V admits a smooth projective model X over the valuation ring W of K (i.e., W = W(k) is the ring of Witt vectors of k). Let \mathcal{A} be the category of Artinian local W-algebras that have k as their residue field. For any object A of \mathcal{A} ,

Received 27 April 1999. Revision received 20 September 1999.

1991 Mathematics Subject Classification. Primary 14G20; Secondary 11G25, 14F30, 19E20.

Author's research supported by Japan Society for the Promotion of Science (JSPS) Research Fellowships for Young Scientists.