GROUP ACTIONS ON S^6 AND COMPLEX STRUCTURES ON \mathbb{P}_3

ALAN T. HUCKLEBERRY, STEFAN KEBEKUS, AND THOMAS PETERNELL

CONTENTS

1.	Introduction	101
2.	Setup and general results	103
3.	The case where G is semisimple	105
4.	Main methods for the elimination of solvable groups	106
5.	Elimination of the solvable groups	108
6.	Proof of the $\mathbb{C}^* \times \mathbb{C}^*$ -action argument	111
7.	Considerations concerning the \mathbb{C}^* -action argument	111
8.	The case of a discrete fixed-point set	114
9.	Proof of the \mathbb{C}^* -action argument if F is a curve	120
Λ	Some further remarks	121

1. Introduction. This note is motivated by the following classical problem: Is there a complex structure on the 6-sphere S^6 , in other words, is S^6 a complex manifold? It has been known since the paper [BS] that all other spheres S^{2n} , n > 1, do not even admit an almost complex structure. On the other hand S^6 admits many almost complex structures; see the presentation in [Ste, Part III, Sect. 41.17]. It is generally believed that none of them is integrable.

Suppose S^6 has a complex structure X. Then by [CDP] every meromorphic function on X is constant. Moreover X is not Kähler, since $b_2(X) = 0$. Therefore the problem is quite inaccessible by standard methods of complex geometry.

In this paper we prove the following theorem.

Theorem 1.1. X is not almost homogeneous. In other words, the automorphism group $\operatorname{Aut}_{\mathbb{Q}}(X)$ does not have an open orbit.

This is related as follows to the question of existence of complex structures on the underlying differentiable manifold of $\mathbb{P}_3(\mathbb{C})$: As above, assume $X = S^6$ has the structure of a complex manifold. For $p \in X$, let $\pi_p : X_p \to X$ denote the blow-up of X at p with $\pi_p^{-1}(p) =: E_p$. Of course $E_p = \mathbb{P}_2(\mathbb{C})$. Since sufficiently small neighborhoods of a hyperplane in $\mathbb{P}_n(\mathbb{C})$ are differentiably identifiable with neighborhoods

Received 5 May 1999.

1991 Mathematics Subject Classification. Primary 53C15; Secondary 32M05, 32M12.