A TOPOLOGICAL RECONSTRUCTION THEOREM FOR \mathfrak{D}^{∞} -MODULES

FABIENNE PROSMANS AND JEAN-PIERRE SCHNEIDERS

CONTENTS

0.	Introduction	39
1.	The functor IB : $\mathcal{T}c \to \mathcal{I}nd(\mathcal{R}an)$	45
2.	Some acyclicity results for L and $\hat{\otimes}$ in $\mathcal{I}nd(\mathcal{B}an)$	52
3.	A topological version of Cartan's Theorem B	62
4.	A factorization formula for $\mathrm{IB}(\mathbb{O}_{X\times Y})$	67
5.	Poincaré duality for $\operatorname{IB}(\mathbb{O}_X)$	70
6.	A holomorphic Schwartz kernel theorem	79
7.	Reconstruction theorem	82

0. Introduction. In algebraic analysis, one represents systems of analytic linear partial differential equations on a complex analytic manifold X by modules over the ring \mathfrak{D}_X of linear partial differential operators with analytic coefficients. Using this representation, the holomorphic solutions of the homogeneous system associated to the \mathfrak{D}_X -module \mathcal{M} correspond to

$$\mathcal{H}om_{\mathfrak{D}_X}(\mathcal{M},\mathbb{O}_X),$$

where \mathbb{O}_X denotes the \mathfrak{D}_X -module of holomorphic functions. If one wants also to take into consideration the compatibility conditions, then one has to study the full solution complex

$$\mathcal{G}ol(\mathcal{M}) = R\mathcal{H}om_{\mathfrak{D}_X}(\mathcal{M}, \mathbb{O}_X)$$

in the derived category $D^+(\mathbb{C}_X)$ of sheaves of \mathbb{C} -vector spaces. In [6] (see also [9]), it was shown that the functor $\mathscr{G}ol$ induces an equivalence between the derived category formed by the bounded complexes of regular holonomic \mathfrak{D}_X -modules and that formed by the bounded complexes of \mathbb{C} -constructible \mathbb{C}_X -modules. This equivalence is usually called the Riemann-Hilbert correspondence. One of its corollaries is that it is possible to reconstruct a complex of regular holonomic \mathfrak{D}_X -modules from its complex of holomorphic solutions.

Our aim in this paper is to extend this reconstruction theorem to perfect complexes of \mathfrak{D}_X^{∞} -modules by taking into account the natural topology of the complex of

Received 2 April 1999. Revision received 14 May 1999.

1991 Mathematics Subject Classification. Primary 32C38, 46M20, 35A27; Secondary 32C37, 58G05.