ERRATUM: LINEAR PROJECTIONS AND SUCCESSIVE MINIMA

CHRISTOPHE SOULÉ

§1. Erratum

The proof of Proposition 1 and Theorem 2 in [3] is incorrect. Indeed, Sections 2.5 and 2.7 in [3] contain a vicious circle: the definition of the filtration V_i , $1 \le i \le n$, in Section 2.5 of that article depends on the choice of the integers n_i , when the definition of the integers n_i in Section 2.7 depends on the choice of the filtration (V_i) . Thus, only Theorem 1 and Corollary 1 in [3] are proved. In the following we will prove another result instead of [3, Proposition 1].

§2. An inequality

2.1. Let K be a number field, let O_K be its ring of algebraic integers, and let $S = \operatorname{Spec}(O_K)$ be the associated scheme. Consider a Hermitian vector bundle (E,h) over S. Define the *i*th successive minima μ_i of (E,h) as in [3, Section 2.1]. Let $X_K \subset \mathbb{P}(E_K^{\vee})$ be a smooth, geometrically irreducible curve of genus g and degree d. We assume that $X_K \subset \mathbb{P}(E_K^{\vee})$ is defined by a complete linear series on X_K and that $d \geq 2g + 1$. The rank of E is thus N = d + 1 - g. Let $h(X_K)$ be the Faltings height of X_K (see [3, Section 2.2]).

For any positive integer $i \leq N$, we define the integer f_i by the formulas

$$\begin{split} f_i &= i-1 \quad \text{if } i-1 \leq d-2g, \\ f_i &= i-1+\alpha \quad \text{if } i-1 = d-2g+\alpha, 0 \leq \alpha \leq g. \end{split}$$

Received July 27, 2012. Revised May 29, 2013. Accepted October 30, 2013. First published online December 9, 2014.

²⁰¹⁰ Mathematics Subject Classification. Primary 14G40; Secondary 14H99, 11H06.

^{© 2014} by The Editorial Board of the Nagoya Mathematical Journal