ERRATUM: LINEAR PROJECTIONS AND SUCCESSIVE MINIMA

CHRISTOPHE SOULÉ

§1. Erratum

The proof of Proposition 1 and Theorem 2 in [3] is incorrect. Indeed, Sections 2.5 and 2.7 in [3] contain a vicious circle: the definition of the filtration $V_{i}, 1 \leq i \leq n$, in Section 2.5 of that article depends on the choice of the integers n_{i}, when the definition of the integers n_{i} in Section 2.7 depends on the choice of the filtration $\left(V_{i}\right)$. Thus, only Theorem 1 and Corollary 1 in [3] are proved. In the following we will prove another result instead of [3, Proposition 1].

§2. An inequality

2.1. Let K be a number field, let O_{K} be its ring of algebraic integers, and let $S=\operatorname{Spec}\left(O_{K}\right)$ be the associated scheme. Consider a Hermitian vector bundle (E, h) over S. Define the i th successive minima μ_{i} of (E, h) as in [3, Section 2.1]. Let $X_{K} \subset \mathbb{P}\left(E_{K}^{\vee}\right)$ be a smooth, geometrically irreducible curve of genus g and degree d. We assume that $X_{K} \subset \mathbb{P}\left(E_{K}^{\vee}\right)$ is defined by a complete linear series on X_{K} and that $d \geq 2 g+1$. The rank of E is thus $N=d+1-g$. Let $h\left(X_{K}\right)$ be the Faltings height of X_{K} (see [3, Section 2.2]).

For any positive integer $i \leq N$, we define the integer f_{i} by the formulas

$$
\begin{aligned}
& f_{i}=i-1 \quad \text { if } i-1 \leq d-2 g \\
& f_{i}=i-1+\alpha \quad \text { if } i-1=d-2 g+\alpha, 0 \leq \alpha \leq g
\end{aligned}
$$

Received July 27, 2012. Revised May 29, 2013. Accepted October 30, 2013.
First published online December 9, 2014.
2010 Mathematics Subject Classification. Primary 14G40; Secondary 14H99, 11H06.

