ERRATA TO "GOOD FORMAL STRUCTURES FOR FLAT MEROMORPHIC CONNECTIONS, I: SURFACES," DUKE MATH. J. 154 (2010), 343–418

KIRAN S. KEDLAYA

Liang Xiao has pointed out that the proof of Theorem 4.2.3 is incomplete: it assumes that the differential module N of rank 1 over R' is free, and this is not immediate in general (see Remark 3.1.3). The published proof does correctly reduce Theorem 4.2.3 to the fact that, for N a rank 1 differential module over $R_{n,m}$, there exists $s \in R_{n,m}$ for which $E(-s) \otimes_{R_{n,m}} N$ is regular. We give here an alternate proof of this statement, by induction on m; the base case m = 0 is trivial because N is regular (e.g., by Theorem 4.1.4).

Recall (Notation 4.1.1) that $F_{(m)}$ is defined to be the completion of $\operatorname{Frac}(R_{n,0})$ with respect to the x_m -adic norm. If we put $S = R_{n,m-1}/(x_m)$ and $\kappa_{(m)} = \operatorname{Frac}(S)$, we may identify $F_{(m)} \cong \kappa_{(m)}((x_m))$. Let V_0 be any lattice in $V = N \otimes_{R_{n,m}} F_{(m)}$, and put $N_0 = N \cap V_0$; as in Lemma 4.1.2, the $R_{n,m-1}$ -module N_0 is finitely generated and torsion free.

By Theorem 2.3.3, there exists $s \in F_{(m)}$ for which $E(-s) \otimes_{F_{(m)}} V$ is regular. Suppose that s has x_m -adic valuation -h < 0; write $s = \sum_{i=-h}^{\infty} a_i x_m^i$ with $a_i \in \kappa_{(m)}$. Suppose further that $a_{-h} \notin S$; since S is noetherian and factorial, a_{-h} fails to belong to the discrete valuation ring T obtained by localizing S at some minimal nonzero prime ideal. (More concretely, this ideal is generated by an irreducible polynomial dividing the denominator of a_{-h} in lowest terms.) Since N_0/x_mN_0 is a nonzero, finitely generated, torsion-free S-module, $(N_0/x_mN_0)\otimes_S T$ is a nonzero finitely generated, torsion-free T-module, and hence a nonzero finite free T-module. In particular, it cannot be stable under multiplication by an element of Frac(T) not contained in T. However, $(N_0/x_mN_0)\otimes_S T$ is stable under multiplication by a_{-h} because for $\mathbf{v}\in N_0$, we have $gx_m^{h+1}\partial_m(\mathbf{v})\equiv -ha_{-h}\mathbf{v}\pmod{x_mN_0}$. This contradiction shows that $a_{-h}\in S$.

By lifting a_{-h} to $R_{n,m}$ and replacing N with $E(-a_{-h}x_m^{-h}) \otimes_{R_{n,m}} N$, we may reduce the value of h; by induction, we reduce to the case where V is itself regular. In this case, by Proposition 2.1.12, $x_m \partial_m$ acts on $N_0/x_m N_0$ as multiplication by some scalar belonging to the subfield of $\kappa_{(m)}$ killed by ∂_i for $i \neq m$. This subfield is precisely k, so we may twist once more to force $x_m \partial_m$ to annihilate $N_0/x_m N_0$. In

DUKE MATHEMATICAL JOURNAL

Vol. 161, No. 4, © 2012 DOI 10.1215/00127094-1548380

Received 28 October 2011.

2010 Mathematics Subject Classification. Primary 14F10; Secondary 32C38, 32P05.