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of ill-posed problems, of loss-based methods for choos-
ing smoothing parameters, supplemented by empirical
checks that the resulting smoothed estimates are ac-
ceptable from a practical point of view. I look forward,
in particular, to reading about the future exploits of
the present author in this important area!
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Comment

Grace Wahba

Professor O‘Sullivan has given us a nice overview
of some of the issues in ill-posed inverse problems as
well as some new ideas. The most important of these
new ideas I believe are the following: a) the extension
of the idea of averaging kernel to reproducing kernel
spaces, with the resulting formula

supremum | 0(t) — E6(t) | = |le. — A(¢) ||%0*
lol2=u?

and b) a new approach to the history matching prob-
lem of reservoir engineering. The formula bears a not
coincidental relationship to Scheffé’s S method of
multiple comparisons (Scheffé, 1959, page 65). In at-
mospheric sciences and possibly elsewhere, extensive
historical data allows the construction of a prior co-
variance for the unknown 6, from which reasonable
norms can often be constructed via the well known
duality between prior covariances and optimization
problems in reproducing kernel spaces. An example of
the use of prior covariances based on historical mete-
orological data to establish penalty functions can be
found in Wahba (1982a). The problems of reservoir
engineering are extremely important and would bene-
fit from the attention of statisticians. Letting

zij = u(xi, tj’ a) + &,
as in Section 4.2, the method of regularization esti-

mate of a is the minimizer of

% 2 (zij — u(xi, tj, @))% + AJ(a)
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(see especially Kravaris and Seinfeld, 1985). This
problem is particularly difficult since, not only is u a
nonlinear function of a, but in general the relationship
is only known implicitly as the solution to a partial
differential equation. It is a good conjecture that the
GCYV for nonlinear problems as proposed in O’Sullivan
and Wahba (1985) can be used to choose A in this
problem. The details are far from obvious but it looks
like the present paper provides an important first step.
Of course this history matching setup leads to some
juicy experimental design problems—choice of the
forcing function g, the location of the wells, and the
times of observation.

Concerning robustness of the PMSE criteria (that
is, minimizing PMSE also tends to minimize other,
possibly more interesting loss functions), further re-
marks on that can be found in Wahba (1985, page
1381). The GCV extension proposed by the author is
an interesting one. Let C be the matrix with ijth entry
cic;. If C is the identity then the extension is the same

‘as GCV. If C is a well conditioned matrix, then it

appears that one can show that the minimizer of
EV(}) is asymptotically near the minimizer of EL(}),
the associated (estimable) loss function. You need
(1/T)tr HC to be small near the minimizer of EL.
I think a problem may arise if you try to choose C to
approximate L(\) of the form

1 Z o
L(\) = T '2:1 | 0(t:) — 0,(t)|?

where the problem is very ill-posed. Consider the
operator which maps 6 to euclidean m space via the
formula 0 — (n(x;, 6), ..., n(xn, 6)). In practice the
theoretical dimension of the range space of this
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