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3. WHY DO WE NEED COLLINEARITY
DIAGNOSTICS?

In trivial problems such as the CPI regression, it is
easy to understand the provenance of large variance
inflation factors. (Actually, «; is only a modest 7.5 for
the centered data.) It is hard to imagine actually
conducting a regression analysis with as little regard
for the nature of the variables as I showed in the
previous section, ignoring the clear a priori relation-
ships between CPI, GNP, CGNP, and the GNP defla-
tor. But in more complicated problems with many
variables, relationships such as the one between GNP
and CGNP can sneak into our regression models with
the data analyst unaware.

The real value of collinearity diagnostics is to alert
the statistician to the presence of a potential difficulty.
Both the condition number and the collinearity indi-
ces can help to assess the magnitude of the potential
problem. The «;’s can also help to identify particular
variables that are involved, so that they can indicate
a starting point for further investigation. It is this
latter property that makes diagnostics useful—they
can be used to focus and to direct further efforts in
refining the model. If they don’t point a finger some-
where, they are not terribly useful.

In the economics data, the moderate value of «;
might lead us to question the role of x; in the model,
as might the values IMP; = 0.63. Yet, the model can-
not be improved by removing either of the two vari-
ables. The problem is the GNP deflator, of course.
How might the diagnostics lead us to discover the
culprit?

There are two similar routes that can be followed
to construct supplementary diagnostics. When «,, (say)
is large, by definition x, is very nearly a linear com-
bination of the other variables, and that linear com-
bination is given by the coefficients (g1, - - -, fp-1)
from (S-3.7). These are simply the regression coeffi-
cients from the regression of x, on the other variables.
It is often the case when &, is large that the particular
linear combination implied by (g, - - -, fip—1) is inter-
pretable, and sometimes the linear combination x, —
Y, i x; can be recognized as a more sensible “regressor”
to have included in the first place than one or more
of the x;’s.

A second route is to examine the p X 1 vector v,
corresponding to the smallest singular value of X.
This vector can be used to obtain the vector u = Xv
which realizes inf(X); it is also the coefficient vector
for a, = vy B, the linear combination of the regression
coefficients about which the data are least informa-
tive. If one or more of the «;’s is large, then inf(X)
must be small, that is, the linear combination u
is close to zero. The coefficients v, point to the
“worst collinearity.” In practice, this linear combina-
tion is also often interpretable, and may suggest
ways in which the original variables can be removed,
rearranged, or reconstructed so as to avoid the near
singularity.
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We congratulate Professor Stewart on a lucid pres-
entation and a practical article. We will discuss several
aspects of the proposed collinearity and relative error
measures.
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1. COLLINEARITY AND ERRORS IN VARIABLES

Stewart gives simplified expressions for probing the
effects of errors in regression variables by comparing
his equations (6.3) and (6.5). Specifically, he defines
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