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that case the function f, represents the joint density,
g, the marginal density. The point x, represents the
center of the marginal distribution g, and y, = y,(x)
is the conditional mode of the distribution of y
given x. Of course this approximate marginalization
does not require f, to be a posterior distribution.
Phillips (1983) uses this approach to approximate the
marginal sampling distribution of various econometric
estimators.

The asymptotic properties of the saddlepoint
approximation to sampling distributions and the
Laplace approximation to marginal densities are very
similar. Both yield approximations that have errors
uniformly of order O(n") on fixed neighborhoods of
x,. Both benefit from numerical renormalization in
the sense that the absolute errors of the approxima-
tions are of order O(n~%?) in n~"2-neighborhoods of
X.. Another interpretation of this result is that the
shapes of the densities g,(-) are approximated to order
O(n~%2) by both methods.

The approximation of posterior expectations by
Laplace’s method is somewhat different. A single
number is to be approximated rather than a function.
Direct application of Laplace’s method yields the max-
imum likelihood estimate or the posterior mode as an
approximation to the posterior mean. The error of
this approximation is of order O(n™'). More accurate
approximations with an error of order O(n?) can be
obtained by using higher order terms, as described
by Lindley (1980), or by using different centers for
the expansions of numerator and denominator inte-
grals, as described in Tierney and Kadane (1986) and
Tierney, Kass and Kadane (1987).

Comment

Robert E. Kass

The world of asymptotics is beautiful and mysteri-
ous. Witness Stirling’s approximation, and recall the
first time you needed to use it. What explains the odd
yet simple formula, you may have asked, and more,
How is it that with one correction term it already
achieves 99.95% accuracy in approximating factorials
as small as 2? Marvel at Figure 1. But recognize, each
time we consider a sample of size n to be part of an
infinite sequence of observations, we are faced with
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The approximate predictive densities discussed
in Leonard (1982), Tierney and Kadane (1986) and
Davison (1986) fall somewhere between marginal
density and moment approximations. Because a pre-
dictive density is a density, its approximation would
appear to be more closely related to the approximation
of marginal and sampling densities. On the other
hand, the predictive density at a particular point can
be expressed as a posterior expectation. The result of
applying second order expectation approximation, as
in (4.1) of Tierney and Kadane (1986), is an approxi-
mation to the predictive density with an error of order
O(n™2). The order of this error term will generally not
be improved by numerical renormalization. As a result
I feel that these approximate predictive densities are
more closely related to approximate expectations than
to approximate marginal densities.

I hope that these comments have added to the
discussion in Section 6 of Professor Reid’s excellent

paper.

ADDITIONAL REFERENCES

LEONARD, T. (1982). Comment on “A simple predictive density
function” by M. Lejeune and G. D. Faulkenberry. J. Amer.
Statist. Assoc. 77 657-658.

LINDLEY, D. V. (1980). Approximate Bayesian methods. In Bayesian
Statistics (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and
A. F. M. Smith, eds.) 223-237. University Press, Valencia.

PHILLIPS, P. C. B. (1983). Marginal densities of instrumental
variables estimators in the general single equation case. Cowles
Foundation Paper No. 582.

an irony: limits do not depend on the first n values,
yet they are able to inform us about the behavior of
the sample. Our finite world seems tied to asymptopia,
but how?

Second-order asymptotic results continue to pro-
duce this feeling of awe and amazement in those who
aren’t yet familiar with them. Nancy Reid’s review
not only tells the saddlepoint story, it also nicely
demonstrates the similarity of method in applications
to maximum likelihood and conditional inference,
robust estimation and Bayesian analysis. My com-
ment consists of (i) a brief description of the relation-
ship between Laplace’s method and the saddlepoint
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