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the upper margin of the braincase with respect to the
lower margin. It is not at all equivalent to the second
weakest principal warp (dotted lines, frames (C) and
(D)). The bending energy eigenanalysis has extracted
these large scale patterns of shape covariance by
explicitly weighting  empirical covariance patterns
inversely to geometric localizability. Other equally
plausible geometric patterns, such as bending of the
upper or lower structures, are not observed to bear
any sample variance.

The example suggests the descriptive possibilities
inherent in accommodating the metric geometry of
Kendall’s shape space to a biological subject matter.
One can imagine other modifications of the metric in
response to other contexts than the biometric. For
instance, one can imagine the statistical study of the
positions of a robot arm. When the state of the linkage
is coded by the coordinates of its joints, then because
certain parts of the robot are rigid, an appropriate
measure of “distance” would be somewhat altered
from the Procrustes. In another sort of constraint,
certain “landmarks” might represent the loci of curves
in the data—boundary arcs not otherwise labeled—
and would thus be “deficient” by one coordinate; again
the Procrustes metric needs to be modified. In a study
of schools of fish, or flocks of birds, an appropriate
shape metric might be the Cartesian product of a
biological shape space by a hydro- or aerodynamic one
(for the V of migrating geese, for instance). Yét other
modifications would arise when the points of Kendall’s
space are “colored” in classes whose separate patterns
cannot be usefully studied without reference to their
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With a high standard of rigor David Kendall has
given us an interesting survey of the theory of shape
analysis that he has pioneered with the help of others
over 'the last decade. This work is now of sufficient
volume that the many topics discussed in this survey
can be only briefly touched upon. I certainly hope that
this paper is a stimulus to additional consideration of
this topic by statisticians. It may well be that on future
occasions the topologists will have to introduce their
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interpenetration, as in problems of multispecies ecol-
ogy. These and other possibilities represent an enrich-
ment of the metric geometry of shape space within the
global purview pursued so sparely and elegantly by
David Kendall.
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theory of shape with preparatory remarks to the effect

that it is not to be confused with the growing statistical
theory of shape.

At first glance, this paper might seem to have much
in common with the differential geometric techniques
in statistics that are associated with Amari (1985) and
others. However, despite the abstraction of some of
the theory, the methods of Kendall are essentially
data analytic rather than model theoretic: the differ-
ential geometry is on the sample space not the param-
eter space. So how much differential geometry must
the data analyst know in order to implement the
techniques that are described in this paper? The an-
swer is largely dependent on the amount of software
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